
Received June 23, 2019, accepted July 22, 2019, date of publication August 12, 2019, date of current version August 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934707

Dextt: Deterministic Cross-Blockchain
Token Transfers
MICHAEL BORKOWSKI 1, MARTEN SIGWART1, PHILIPP FRAUENTHALER1,
TANELI HUKKINEN2, AND STEFAN SCHULTE 1
1Distributed Systems Group, TU Wien, 1040 Vienna, Austria
2Pantos GmbH, 1020 Vienna, Austria

Corresponding author: Michael Borkowski (m.borkowski@infosys.tuwien.ac.at)

This work was supported in part by the Pantos GmbH through the TAST Research Project, and in part by the TU Wien University Library
through its Open Access Funding Programme.

ABSTRACT Current blockchain technologies provide very limited interoperability. Restrictions with regard
to asset transfers and data exchange between different blockchains reduce the usability and comfort of
users, and hinder novel developments within the blockchain space. As a first step towards blockchain
interoperability, we propose the DeXTT cross-blockchain transfer protocol, which can be used to record
a token transfer on any number of blockchains simultaneously in a decentralized manner. We provide a
reference implementation using Solidity, and evaluate its performance. We show logarithmic scalability of
DeXTT with respect to the number of participating nodes, and analyze cost requirements of the transferred
tokens.

INDEX TERMS Blockchain interoperability, cross-blockchain proof problem, eventual consistency, claim-
first transactions, deterministic witnesses.

I. INTRODUCTION
Blockchain technologies, the underlying mechanism of cryp-
tocurrencies, have gained significant interest in both industry
and research [1]. After the feasibility of decentralized ledgers
has been demonstrated by Bitcoin [2], significant invest-
ment into research and development related to blockchains
and cryptocurrencies has been ignited. Outcomes of these
research and development activities add additional layers on
top of existing blockchain implementations [3], [4], provide
improvements of Bitcoin itself [5], and facilitate entirely
new blockchains [6], which provide sophisticated concepts,
such as smart contracts [7]. Furthermore, there is substantial
research on potential use cases of blockchains in various
economic, social, political, and engineering fields [8]. Nev-
ertheless, the ways in which blockchains could potentially
interact with each other remain mostly unexplored.

The constant increase in the number of independent,
unconnected blockchain technologies causes significant frag-
mentation of the research and development field, and poses
challenges for both users and developers of blockchain
technologies [9]. On the one hand, users have to choose
which currency andwhich blockchain to use. Choosing novel,

The associate editor coordinating the review of this article and approving
it for publication was Bhaskar Prasad Rimal.

innovative blockchains enables users to utilize new features
and to take advantage of state-of-the-art technology. How-
ever, users also risk the loss of funds if the security of
such a novel blockchain is subsequently breached, poten-
tially leading to a total loss of funds [10]. Choosing mature,
well-known blockchains reduces the risk of such losses, since
these blockchains are more likely to have been analyzed in
depth [11], but innovative features of novel blockchains may
remain unavailable.

On the other hand, when designing decentralized block-
chain-based applications, currently, developers must decide
which blockchain to base their application on. This can form
a substantial impedance to research and technical progress,
since individual technologies form isolated solutions, and
interoperability between blockchains is mostly not given.

We therefore aim to enable blockchain interoperability.
As an overarching goal, we seek to provide means of inter-
action between blockchains, including cross-blockchain data
transmission, cross-blockchain smart contract interaction,
and cross-blockchain currency transfer. As a first step to
enable such blockchain interoperability, we propose a pro-
tocol for cross-blockchain asset transfers, using tokens not
locked within an individual blockchain. Instead, it can be
used on any number of blockchains, and its transactions are
autonomously synchronized across blockchains in a decen-

111030 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-3440-8592
https://orcid.org/0000-0001-6828-9945


M. Borkowski et al.: Dextt

tralized manner. The protocol presented in this paper does
not depend on any single blockchain in particular, and tol-
erates total failure of any number of blockchains it is used
on, as long as there is at least one blockchain remaining to
operate on. Our solution prevents double spending, is resilient
to the cross-blockchain proof problem (XPP) [12], and does
not need external oracles or other means of cross-blockchain
communication to function. We provide a reference imple-
mentation using Solidity, and evaluate its performance with
regard to time and cost.

The contributions of this manuscript are as follows:

• We provide a formal definition of a blockchain’s struc-
ture, its consensus mechanisms, and discuss the XPP,
showing that strict consistency between blockchains is
not feasible in practice.

• Due to this consistency limitation, we discuss how to
provide eventual consistency for cross-blockchain token
transfers by utilizing concepts such as claim-first trans-
actions and deterministic witnesses.

• We formally define Deterministic Cross-Blockchain
Token Transfers (DeXTT), a protocol implementing
eventual consistency for cross-blockchain token trans-
fers.

• We provide a reference implementation in Solidity, pre-
senting and evaluating DeXTT.

The remainder of this paper is structured as follows.
In Section II, we discuss underlying technologies, provide a
brief discussion of blockchains, transaction types, claim-first
transactions, and witness rewards, outline the XPP, and define
notation used throughout this work. Section III presents the
transfer protocol in detail, and Section IV provides an evalu-
ation of our approach. Section V gives an overview of related
work. Finally, Section VI summarizes and concludes the
paper.

II. BACKGROUND
Our work aims at providing a protocol for cross-blockchain
asset transfers, ensuring that such transfers are performed in
a decentralized and trustworthy manner. Assets can be rep-
resented on blockchains in various ways. Apart from native
currencies (e.g., Ether on the Ethereum blockchain, or Bitcoin
on the Bitcoin blockchain), there are other types of assets,
commonly called tokens [13]. In the recent past, various asset
types with different properties have been discussed, such
as fungibility, divisibility, and types of implementation like
the User-Issued Asset (UIA) and Unspent Transaction Out-
put (UTXO) models. We refer to our previous work for a
thorough analysis [13].

In the work at hand, we discuss a token type that is able to
exist on a given number of blockchains simultaneously, i.e., a
pan-blockchain token. We refer to an implementation of this
token as PBT. PBTs are not locked to a single blockchain and
can be traded using the DeXTT protocol, which ensures syn-
chronization of token balances across blockchains. We refer
to the set of blockchains participating in this protocol as an

TABLE 1. Examble balances of wallets Wa, Wb, and Wc using traditional
blockchain assets.

TABLE 2. Examble balances of wallets Wa, Wb, and Wc using PBTs
synchronized by DeXTT.

ecosystem of blockchains. According to the DeXTT protocol,
a wallet Ww is holding a given number of PBTs not only on
a given blockchain, but on all blockchains in the ecosystem
in an equal amount. We demonstrate this in Tables 1 and 2.
In Table 1, we show traditional assets held on three different
blockchains, Ca, Cb, and Cc. In contrast, Table 2 shows that
PBT balances are synchronized across blockchains. Thus,
a transfer from Ww to another wallet Wv is required to be
recorded on all participating blockchains, and there must
be consensus among all participating blockchains about the
balance of each wallet. We use such a model to avoid having
to rely on one particular blockchain.

In contrast to keeping assets on a single blockchain, syn-
chronizing their balances across blockchains allows users
to react to security breaches in blockchains. For instance,
if an attacker manages to illegally modify balances on a
blockchain, all other blockchains remain synchronized and
the attacker has no way to propagate the illegal changes.
In addition, as blockchains are publicly readable, any such
breach would rapidly reduce the community’s trust in the
blockchain, and the compromised blockchain would simply
be abandoned.

A. NOTATIONS AND CONVENTIONS
In the following, we use particular notations for concise
description of certain objects: We denote blockchains as C,
identifying themwith a subscript letter, e.g., Ca. Additionally,
we denote wallets asW with a subscript letter, e.g.,Ws,Wd ,
or Ww. A wallet consists of a pair of corresponding keys,
out of which one is a public key, and one is a private key.
When referring to a token transfer in general, Ws is used to
denote the source (sending) wallet, Wd is used to denote the
destination (receiving) wallet, and Ww denotes a witness as
discussed in Section II-C.

In this work, we use the concept of transactions to
denote actions executed on a blockchain which modify the
blockchain state. We use the expression ‘‘Ww posts the trans-
action TRANS on Cc’’ to describe the conceptual protocol,
where TRANS is the transaction type used (one out of CLAIM,
CONTEST, FINALIZE, VETO, and FINALIZE-VETO, as presented

VOLUME 7, 2019 111031



M. Borkowski et al.: Dextt

in Section III). In a scenario where smart contracts are used,
this translates to the key pair ofWw being used to sign a call
to the smart contract (on blockchain Cc), where the function
trans() is invoked. For certain transactions, we define
preconditions (e.g., sufficient balances), which can be imple-
mented as checks within the smart contract function. The
transactions posted by wallets can either originate from the
action of a user, or be initiated by a program (e.g., a wallet
application) acting autonomously.

To denote our transactions, we use the notation as shown
in (1), where TRANS is the transaction type used, Ww is the
wallet (i.e., the pair of keys) used to sign and post the transac-
tion, a, b, and c denote data contained in the transaction (i.e.,
the arguments), and σ is the signature when using the private
key of Ww to sign the data [a, b, c]. For brevity, we use only
σ to denote a multivariate value, e.g., a three-variate ECDSA
signature.

Ww : TRANS
[
a, b, c

]
σ

(1)

We denote a transfer of x PBTs from Ws to Wd as
Ws

x
−→Wd . Furthermore, we denote the PBT balance ofWw

recorded on Cc as Cc :Ww.

B. THE CROSS-BLOCKCHAIN PROOF PROBLEM
When developing blockchain interoperability, we aim at
enabling interaction between blockchains. As described in
Section I, this includes cross-blockchain data transmission,
smart contract interaction, and currency transfer. All of these
tasks require consistency between blockchains, i.e., data on
one blockchain must be consistent with data on another
blockchain. This implies that the presence of data on one
blockchain must be a strict and reliable indication of related
data on another blockchain.

In our scenario, where we aim to synchronize token
balances on various blockchains, we might envision a
naïve approach where strict consistency is supported across
blockchains, i.e., a token transfer recorded on one blockchain
can be directly and indubitably detected on another
blockchain. This would allow easy synchronization of token
balances. However, in this section, we show formally that
such strict consistency between blockchains would require
constraints which are not feasible in practice using con-
temporary blockchains, deeming strict consistency between
blockchains impossible.

1) DEFINITIONS
To the best of our knowledge, in existing literature, there is
no formal definition of blockchains in general. This is mostly
due to the variety of existing blockchain technologies and
implementations. Some blockchains, e.g., Ethereum [6], are
formally defined, but many others are only defined by their
source code, and lack formal documentation or definition.

Since we aim to reason about aspects of blockchain
interoperability, we require term definitions applying to
as many blockchains as possible. We have therefore col-

lected definitions, notation and wording from existing
literature [6], [7], [14], and in alignment with this literature
to the greatest extent possible, provide our own definitions of
certain technical terms in the following.
Definition 1 (Blockchain): A blockchain C is a distributed,

decentralized, periodically growing, publicly writeable,
append-only data structure consisting of blocks, with a
defined genesis block, transaction consensus, and arbitration
consensus.
Definition 2 (Blocks, Genesis Block): Within a block-

chain, a block B is a data structure linked to one parent block
P(B), containing arbitrary payload data. The graph of linked
blocksmust not contain cycles, and the genesis block, denoted
as B0, is the only block without a parent.
Definition 3 (Lineage): The lineage of a block B, denoted

as lin(B), is the line of descent of B from the genesis block
B0, i.e., lin(B) = lin(P(B)) ∪ B, where lin(B0) = B0.
Since blocks must not form cycles, the lineage of a block

is always a finite set.
Definition 4 (Transaction Consensus): The transaction

consensus is a well-defined set of properties a block B needs
to have in order to be deemed a valid next block of its lineage
lin(B).

We define the transaction consensus as the function
tc : B∗ × B→ {0, 1} (where B is the set of all possible
blocks, and B∗ is the set of all possible finite sets of blocks
with arbitrary cardinality):

tc(lin(B),B) =

{
1 if B is a valid descendant of lin(B)
0 otherwise

The function tc decides whether a block B is a valid succes-
sor block of the lineage lin(B), i.e., it returns a (boolean) deci-
sion value. Note that this definition implies that a blockchain
is self-contained, i.e., the validity of each block can be
decided by only regarding its lineage (that is, without taking
into account external, off-chain data).

The transaction consensus defines the structure of a
blockchain. For Bitcoin, it consists of the block and trans-
action structure, and the definition of the Script opcodes and
their effects. For Ethereum, the transaction consensus con-
sists of the definition of data structures required for blocks,
the storage and memory definition and the opcodes of the
Ethereum Virtual Machine (EVM).

The entirety of valid blocks forms a tree with the gene-
sis block at the root. There can be multiple blocks which
are currently not referenced by any other block as parents,
i.e., leaf blocks. Blockchains therefore require a method of
determining which leaf block to use (e.g., to reference as
parent for a newly created block).

We call this process arbitration and define a corresponding
consensus:
Definition 5 (Arbitration Consensus): The arbitration

consensus, given a set of leaf blocks, deterministically returns
one preferred leaf block.

111032 VOLUME 7, 2019



M. Borkowski et al.: Dextt

The arbitration consensus is hard-coded into each node
participating in the blockchain. For instance, in the original
implementation of Bitcoin, the arbitration seeks the longest
chain, i.e., the block with the longest lineage wins.1 For
Ethereum, the leaf of the lineage with the highest total dif-
ficulty (an attribute of Ethereum blocks) is selected. The
arbitration consensus only considers valid blocks.
Definition 6 (Main Chain, Orphans): The main chain

consists of the leaf node currently selected by the arbitration
consensus, together with its lineage. Valid blocks not part of
the main chain are called orphans.
Definition 7 (Data Containment): Data D is included in

blockchain C, denoted asD ∈ C, iff2 D is part of a valid block
within the main chain of C.
Data within blocks which are not on the main chain is not

regarded as the canonical state of the blockchain as a whole.
For the purpose of this work, when examiningwhether certain
data is included in a certain blockchain, we are technically
interested whether the data is included in a block on the
main chain. However, no node can be certain that the chain
it currently regards as the main chain is not superseded by
another chain, unknown to the node [1]. We can therefore
only realistically answer questions regarding whether data is
or is not part of any (valid) block, either on the main chain,
or on the lineage of an orphan.

Note that due to the aforementioned variety of different
existing blockchain technologies, it is not trivial to generalize
definitions to include all implementations. However, our def-
initions cover the most commonly used blockchain technolo-
gies, including but not limited to Bitcoin [2], Ethereum [6]
and its fork Ethereum Classic [15], as well as Litecoin [5],
Dash [16] and Waves [17].

2) CROSS-BLOCKCHAIN PROOFS
We now return to the XPP and, for the sake of reason-
ing, assume that the creation of a cross-blockchain proof
for ensuring strict consistency is indeed possible. For our
purposes, this means that the presence of this proof implies
strictly the presence of the data to be proven:
Assumption 1: For any D ∈ Cb, data Dproof ∈ Ca can serve

as reliable proof that D ∈ Cb, such that Dproof ∈ Ca H⇒
D ∈ Cb.
Without loss of generality, we assume that Dproof is

included inBa on Ca, andD is included inBb on Cb.We denote
tca as the transaction consensus of Ca, and tcb as the transac-
tion consensus of Cb.
D ∈ Cb holds iff tcb(lin(Bb),Bb) = 1, i.e., if Bb is valid

according to the transaction consensus. Since tc accepts the
lineage lin(Bb), in general, the outcome can depend on any
data within lin(Bb).
Accordingly, Dproof ∈ Ca holds iff tca(lin(Ba),Ba) = 1.

However, due to Assumption 1, Dproof ∈ Ca H⇒ D ∈ Cb
1The original paper [2] defines ‘‘Nodes always consider the longest chain

to be the correct one’’, but implementations use block difficulty. Elaborating
on this differentiation is outside of the scope of our work.

2‘‘iff’’ is equivalent to ‘‘if and only if’’

holds, so we arrive at:

Dproof ∈ Ca ⇐⇒ tca(lin(Ba),Ba) = 1 H⇒

tcb(lin(Bb),Bb) = 1 ⇐⇒ D ∈ Cb

Thus, tca(lin(Ba),Ba) = 1 H⇒ tcb(lin(Bb),Bb) = 1
follows, i.e., the transaction consensus of Ca verifying the
validity of Ba must verify the validity of Bb, which depends
on its lineage lin(Bb) according to Definition 4. Note that this
does not mean that tcb necessarily requires all of the lineage
data lin(Bb). Nevertheless, in the general case, the entire
lineage data of Bb might be required for verifying the validity
of Ba.
In addition, we observe that the outcome of tca with regard

to Ba must be equivalent to the outcome of tcb with regard
to Bb. More formally, there must exist a mapping m : B∗ ×
B → B, where for each m(lin(β), β) = α, it holds that
tca(lin(α), α) = 1 H⇒ tcb(lin(β), β) = 1. In other words,
for every block β (and its lineage) on Cb where tcb evaluates
to 1, a block α must exist or be createable on Ca where tca
returning 1 for α is a sufficient condition of tcb returning 1
for β. In simpler terms, tca must be able to mimic tcb.
Summarizing the above, there are two main challenges to

cross-blockchain proofs: (i) proving D ∈ Cb on Ca requires
the inclusion of the necessary subset (potentially all) of the
data of lin(Bb) on Ca, and (ii) additionally, tca must be pow-
erful enough to mimic tcb.
From the above reasoning, we return to the original intu-

ition that the presence of certain data (e.g., a specific trans-
action) on a given blockchain is rooted in this blockchain,
and that it cannot be verified without verifying the entire
blockchain:
Lemma 1 (Lemma of Rooted Blockchains): For any D ∈

Cb, the existence of Dproof ∈ Ca ⇐⇒ D ∈ Cb implies
(i) access to the lineage of the block containing D on Ca,
and (ii) a sufficiently powerful transaction consensus tca to
mimic tcb.

3) IMPLICATIONS
Lemma 1 presents two requirements for verification of the
presence of data on Cb within Ca, namely (i) the presence of
a subset of the block lineage of Cb on Ca, and (ii) the verifi-
ability of the transaction consensus of Cb by the transaction
consensus of Ca.
Considering the first requirement, the practical implication

is that blocks stored on Cb must, in one way or another,
be stored on Ca. While for a given instance, the subset of
required lineage blocks might be small, in general, this can
affect many or all blocks of Cb. Compression algorithms can
be used to minimize the amount of data required for this
storage. However, in practice, data stored on blockchains is
already stored in a relatively minimized form, since storage
space is relatively expensive in blockchains [18], [19]. This
means that both Ca and Cb can be assumed to be coded
in a relatively storage-saving form (i.e., with high entropy).

VOLUME 7, 2019 111033



M. Borkowski et al.: Dextt

Furthermore, even if compression is feasible, information has
a lower limit on required storage space [20].

Since storage is expensive, storing a (potentially large)
subset of a blockchain’s block history on another blockchain
is infeasible. We therefore argue that this aspect alone makes
cross-blockchain proofs impossible under practical consider-
ations.

Furthermore, we consider the second requirement. Even
if the block history necessary for verification is provided,
according to the second requirement, the transaction consen-
sus tca must be able to validate blocks on Cb. In practice,
blockchains use a transaction consensus consisting of simple
operations stored in transactions (e.g., Script, the scripting
system used by Bitcoin), or, in more complex cases, smart
contracts (e.g., EVM).

In practical terms, this implies that the instruction set used
by Ca must be able to simulate the instruction set used by Cb.
In cases both chains use Turing-complete virtual machines,
such as the EVM, this is the case. However, in other cases,
such as Script, verifying more complex blockchains (such as
Ethereum) imposes a limitation with regard to computational
complexity.

C. CROSS-BLOCKCHAIN BALANCE CONSISTENCY
We have seen that due to the XPP, strict consistency between
blockchains is not possible in practice. This means that we
cannot use a traditional, strictly consistent protocol for trans-
ferring token balances. Therefore, in our proposal, we relax
this requirement to eventual consistency, i.e., we accept tem-
porary disagreement with regard to balances, as we show in
the following. In practice, blockchains themselves only pro-
vide eventual consistency, since there is no guarantee when
data submitted to the network will be included in a block [1].
Therefore, using eventual consistency for synchronizing data
between blockchains is a feasible approach.

For the purpose of this paper, we follow the assump-
tion that each user of DeXTT is generally interested in all
operational (non-failed) blockchains in an ecosystem, and
specifically, in the consistency of their balance across all
blockchains. A blockchain is assumed to be failed if for some
reason public trust into it is lost, e.g., due to a published
exploit.

Therefore, all interested parties (i.e., wallet holders) are
monitoring all blockchains in the ecosystem, and if a party
participates in the protocol on one blockchain, it also partic-
ipates on all other blockchains. We motivate this by defining
that any inconsistency in wallet balances between non-failed
blockchains effectively renders the wallet useless.

We propose to achieve eventual consistency using claim-
first transactions [12]. While traditionally, blockchain trans-
fers disallow claiming tokens before they have been marked
as spent, we explicitly decouple the required temporal order
of SPEND → CLAIM and allow its reversal, i.e., claiming
tokens before spending them. In our case, for a certain period
of time, tokens are allowed to exist in the balance of both
the sender and the receiver (on different blockchains), namely

until the information is propagated to all blockchains. In the
presented protocol, we provide a mechanism to enforce even-
tual spending of the tokens in the sender balance, as described
in Section III.

In order to ensure such eventual consistency, we rely
on parties observing a transfer to propagate this informa-
tion across blockchains. These parties are denominated as
observers. A monetary incentive is provided for any observer
in order to ensure propagation. We use part of the transferred
PBTs for these witness rewards. The main challenge of this
approach is the decision which observer receives the reward.
Using a first-come-first-serve basis is not feasible, since it
is possible that on one blockchain, one observer is the first
to propagate the transfer and claim the reward, while on
another blockchain, another observer takes this place. This
would lead to two different observers receiving a reward
on two different blockchains, and therefore, to potentially
inconsistent balances.

In this work, we address this problem by using determin-
istic witnesses [21]. In short, instead of using a first-come-
first-serve reward distribution, we define a witness contest.
Its duration is fixed to a validity period, contestants (i.e.,
observers aiming to become reward candidates) can register
for the contest, and the decision of who wins the contest is
made deterministically and predictably by each blockchain at
the end of the contest. In Section III, we propose an approach
for deciding the winning witness in a way that is fair (i.e.,
all contestants have the same chance of winning), while at
the same time, it is purely deterministic, and—given the
assumptions discussed above—assures all blockchains reach
the same decision about assigning witness rewards.

Our approach therefore solves the problem of assign-
ing witness rewards, which is required as an incentive for
observers of a cross-blockchain transfer to propagate this
transfer information, ensuring eventual consistency across the
ecosystem of blockchains.

D. CRYPTOGRAPHIC SIGNATURES AND HASHES
In our approach, we make extensive use of cryptographic
signatures and hashes, which are essential for blockchains
themselves. For instance, the ECDSA algorithm [22] is used
by Ethereum for creating and verifying signatures, and is
also implemented natively and available to the EVM [23].
We use Solidity, the smart contract language of Ethereum, for
the reference implementation of DeXTT. However, we note
that DeXTT is not limited to Solidity or the EVM, and other
blockchains offering signatures and hash algorithms can very
well be used. The only crucial property required by our
approach is a distribution of hash values which is approx-
imately uniform. KECCAK256, the hash algorithm used by
Ethereum, satisfies this requirement [24], as does the SHA-256

algorithm used by Bitcoin [25].

III. DECENTRALIZED CROSS-BLOCKCHAIN TRANSFERS
In the following, we present the DeXTT protocol, together
with an example transaction. In our example, we consider

111034 VOLUME 7, 2019



M. Borkowski et al.: Dextt

TABLE 3. Initial state of the involved blockchains at t = 0.

three blockchains participating in cross-blockchain transfers,
Ca, Cb, and Cc. Note, however, that our approach is applicable
to an arbitrary number of blockchains. Furthermore, we con-
sider the walletsWs,Wd ,Wu,Wv, andWw. We assume that
initially,Ws has 80 PBTs, and all other wallets have a balance
of zero (see Table 3). We furthermore use a fixed reward
of 1 PBT for the witness propagating this transaction across
the blockchain ecosystem. Note that pro rata fees (e.g., 1% of
the transferred PBTs, or an amount selected by the sender) are
also possible and the exact fee model is an economic choice.
We will discuss this in more detail in Section IV-B.

As discussed in Section II-C, claim-first transactions
require all blockchains within the ecosystem to maintain and
synchronize token balances. Therefore, the initial situation
is as depicted in Table 3. Balances for Wu and Wv are not
shown, as they will remain zero throughout the example.

A. TRANSFER INITIATION
In the following, we assume that Ws intends to transfer
20 PBTs to Wd , i.e., reduce the PBT balance of Ws by 20,
increase the PBT balance of Wd by 19 (20 reduced by 1,
the witness reward), and increase the PBT balance of a (yet
to be decided) witness wallet by 1. As stated in Section II-C,
we only require eventual consistency for this transfer, i.e., a
temporary overlap is allowed whereWd has already received
19 PBTs, but the balance of Ws is still unchanged.

Therefore, Ws signs this intent, confirming that indeed,
20 PBTs—minus 1 PBT of witness reward—are to be trans-
ferred to Wd . Furthermore, we define a validity period for
the transfer, which denotes the time during which the witness
selection for the transfer has to take place. In our example
scenario, this time span lasts for 1 minute. However, this time
can be set significantly shorter or longer, depending on the use
case. We provide an analysis of the impact of this parameter
in Section IV-A.

We denote the entirety of the sender’s intent using the
notation shown in (2), where [t0, t1] is the validity period, and
α denotes the signature of the entire content of the brackets
byWs. The resulting signature itself is denoted as α. We use
the ECDSA algorithm, natively supported by the EVM, for
all signatures. However, as pointed out in Section II-D, other
algorithms could also be used, assuming that their verification
is supported on all involved blockchains.[

Ws
x
−→Wd , t0, t1

]
α

(2)

The data contained in (2) is transferred to the receiving
walletWd . This transfer can happen on any blockchainwithin

the ecosystem, or using an off-chain channel. Since all of
the data contained in (2) will be published throughout the
DeXTT transaction, this channel does not need to be secure,
and we do not specifically define any communication means.
The receiving wallet then counter-signs the data from (2)
using its respective private key, yielding the entire Proof of
Intent (PoI), as shown in (3).[

Ws
x
−→Wd , t0, t1, α

]
β

(3)

The PoI contains all information necessary to prove to
any blockchain (i.e., to its smart contracts and miners) that
the transfer is authorized by the sender and accepted by the
receiver. The receiver can now post this PoI using a trans-
action we call CLAIM. This transaction allows the receiver
to publish the PoI in order to later claim the transferred
PBTs. The receiver can post this on any blockchain within
the ecosystem, and does not need to post it on more than one
blockchain. The CLAIM transaction is defined and noted as
shown in (4).

Wd : CLAIM
[
Ws

x
−→Wd , t0, t1, α

]
β

(4)

The preconditions for the CLAIM transaction are (i) that the
PoI is valid (i.e., that the signatures α and β are correct),
(ii) that the balance of the source wallet Ws is sufficient,
(iii) that the PoI is not expired, i.e., that t1 has not yet passed,
and (iv) that no PoI is known to the blockchain on which it
is posted with an overlapping validity period and the same
source wallet Ws. In other words, a wallet must not sign an
outgoing PoI while another outgoing PoI is still pending. This
is done in order to prevent a double-spending attack, where
two PoIs are signed which are conflicting, i.e., which, if both
were executed, would reduce the sender’s balance below zero.

The purpose of the CLAIM transaction is the publishing of
the PoI, which can then be propagated across the blockchain
ecosystem as described later.

In our example, we assume that the receiver Wd posts
the CLAIM transaction (containing the PoI) on Ca as shown
in (5), where 1 and 61 mark the validity period in seconds
(i.e., one minute total validity), 0xAA is assumed to be the
signature α, and 0xBB is assumed to be the signature β. For
brevity, one-byte signatures are used for demonstration in this
example. Naturally, in reality, the signature hashes are longer
(e.g., 32 bytes for KECCAK256).

Wd : CLAIM
[
Ws

20
−→Wd , 1, 61, 0xAA

]
0xBB

(5)

The CLAIM transaction on Ca changes the blockchain state
as shown in Table 4. We see that the PoI has been stored
within Ca, which is referred to by its signature α. The balances
remain unchanged on Ca because the validity period is not yet
concluded, i.e., t1 is not yet reached. Naturally, since no infor-
mation has been posted yet to Cb and Cc, these blockchains
also remain unchanged.

VOLUME 7, 2019 111035



M. Borkowski et al.: Dextt

TABLE 4. State after PoI publication at t = 1.

B. WITNESS CONTEST
At this point, the information about the intended transfer (the
PoI) is only recorded on Ca. However, this information must
be propagated to all other blockchains to ensure consistency
of balances across blockchains. We use the following mecha-
nism, which we refer to as the witness contest, to ensure this
consistency.

Any party observing the CLAIM transaction on Ca can
become a contestant, i.e., a candidate for receiving a reward.
In order to become a contestant, the party must propagate
the PoI across all blockchains in the ecosystem. We define
the transaction used for this as CONTEST. This transaction is
defined for any arbitrary walletWo as shown in (6), where the
new signature ω is the result of the contestantWo signing the
PoI. This signature will later play a role in determining the
winner of the witness contest, as described in Section III-C.

Wo : CONTEST
[
Ws

x
−→Wd , t0, t1, α, β

]
ω

(6)

The CONTEST transaction can be posted multiple times by
various contestants during the validity period. Again, the PoI
must be valid and must not violate any PoI’s validity period.

In our example, we assume that Wu is the first to post
a CONTEST transaction on Cb as shown in (7), where again,
1 and 61 denote the validity period, 0xAA and 0xBB are
the PoI signatures, and 0xC2 is the signature resulting from
Wu signing the PoI. The signature values in this example
are chosen arbitrarily in order to demonstrate the subsequent
witness contest.

Wu : CONTEST
[
Ws

20
−→Wd , 1, 61, 0xAA, 0xBB

]
0xC2

(7)

Next, we assume that the other observers Wv and Ww
become contestants by posting similar CONTEST transactions.
We assume that the resulting signatureω forWv is 0xC3, and
that the signature forWw is 0xC1.

Wv : CONTEST
[
Ws

20
−→Wd , 1, 61, 0xAA, 0xBB

]
0xC3

(8)

Ww : CONTEST
[
Ws

20
−→Wd , 1, 61, 0xAA, 0xBB

]
0xC1

(9)

Transactions (7–9) are eventually posted to Ca, Cb, and Cc.
This is because every contestant participating in the contest is

TABLE 5. State during witness Contest at t = 2.

interested in participating in all blockchains in the ecosystem
to maintain their own consistency.

The state resulting from the three contestants posting to Ca,
Cb, and Cc is shown in Table 5. The blockchain maintains a
list of contestants together with their ω signature values.

C. DETERMINISTIC WITNESS SELECTION
After the expiration of t1, the witness contest ends, a winning
witness must be selected, and is awarded with the witness
reward. This is performed by the FINALIZE transaction, which
must be triggered after t1.
Conceptually, this transaction is purely time-based. It can

be triggered by the receiver, by any other party, or using a
decentralized solution like the Ethereum Alarm Clock [26].
The latter approach has the advantage of being indepen-
dent of any party’s activity. However, for simplicity, in our
current approach and the discussion below, we assume that
the destination wallet Wd posts the FINALIZE transaction
on each blockchain. The FINALIZE transaction is defined
in (10).

FINALIZE
[
α

]
(10)

The FINALIZE transaction only requires the parameter α,
identifying the PoI, because the blockchain already contains
all necessary information about the PoI. The precondition
of t1 being expired (t > t1) is necessary for the FINALIZE

transaction to avoid premature finalization.
The effect of the FINALIZE transaction is that the con-

test for the PoI referred to by its signature α is concluded.
This means that the winning witness is awarded the witness
reward, which, according to the introduction of Section III,
is 1 PBT in our current approach. Furthermore, the conclusion
of the contest performs the actual transfer of PBTs, i.e., x
PBTs are deducted from the balance ofWs, andWd receives
(x − 1) PBTs (x reduced by the witness reward). This action
is executed on all blockchains, since FINALIZE is posted on all
blockchains.

We define the winning witness to be the contestant with the
lowest signature ω (i.e., with its value closest to zero). This
signature cannot be influenced by the contestants, since it is

111036 VOLUME 7, 2019



M. Borkowski et al.: Dextt

FIGURE 1. Sequence of Transactions within a DeXTT Transfer.

TABLE 6. Final state after witness contest at t > 61.

only formed from the PoI data and the contestants’ private
key. Accordingly, the contestants have no way of increasing
their chances of winning a particular contest, except for cre-
ating a large number of wallets (private keys).

Such ‘‘mining for wallets’’ is not a violation of our protocol
and no threat to its fairness, since doing so is computation-
ally expensive, and therefore creates cost on its own. There
exists a break-even point of the witness reward and the cost
created by the creation of a large number of wallets [21].
Effectively, this challenge is comparable tomining in Proof of
Work (PoW) in that resources, i.e., computing power, can be
traded for rewards.

In our example above, the witness with the lowest ω is
Ww, with ω = 0xC1. Therefore, this witness is awarded
with the witness reward. The final blockchain state is shown
in Table 6. The balances of the competing contestants Wu
and Wv remain zero. The expired PoIs are no longer shown
for brevity.

Figure 1 shows an overview of the transactions posted by
various wallets on various blockchains. The contestant which
ultimately becomes the winning witness (Ww) is shown sep-
arately from all other contestants, since this wallet is later
assigned the witness reward. We see that first, the sender

Ws provides the receiver Wd with the transfer information
shown in (2). This may happen before or after t0. Then, not
sooner than t0, the receiver posts a CLAIM transaction to one
of the blockchains (in this case, Ca). This is observed by
all contestants, which then post CONTEST transactions to all
blockchains. Note that the CONTEST transactions do not have
to follow any particular order, and can be posted concurrently
by all contestants (as depicted in Figure 1). After t1 expires,
the receiver (here:Wd ) posts the FINALIZE transaction, which
finalizes the transfer and deterministically assigns the witness
reward to the contest winner (here: Ww).

D. PREVENTION OF DOUBLE SPENDING
A malicious sender might sign two different PoIs conflicting
with each other. For instance, a sender owning 10 PBTsmight
create two PoIs, transferring 8 PBTs each, to two different
wallets. Executing these transfers would reduce the sender’s
balance by 16 PBTs in total, resulting in -6 PBTs.

In order to prevent such behavior, we introduce the VETO

transaction. The VETO transaction can be called by any party
noticing two conflicting PoIs (i.e., two PoIs with the same
source, different destinations, and overlapping validity peri-
ods). Since such PoIs are forbidden by definition, the VETO

transaction is used to penalize the sender, and to protect the
receiver from losing PBTs due to inconsistent balances.

Since the VETO transaction requires incentive, we propose
to use the same technique as presented above, i.e., a contest.
Any observer of a PoI conflict can report this conflict using
the VETO transaction, and after the expiration of the veto
validity period, the observer with the lowest ω signature is
assigned a reward.

VOLUME 7, 2019 111037



M. Borkowski et al.: Dextt

We therefore define the VETO transaction as shown in (11),
where α refers to the original PoI, which is known to the
blockchain because it has already been posted on a given

blockchain, and the remaining dataWs
x ′
−→Wd ′ and t ′0, t

′

1, α
′

describe the new, conflicting PoI.

Ww : VETO
[
α, Ws

x ′
−→Wd ′ , t ′0, t

′

1, α
′

]
ω

(11)

The VETO transaction, similar to CONTEST, is posted on all
participating blockchains. Note that multiple observers can be
expected to concurrently post VETO transactions. Therefore,
it is possible that on one blockchain, a given PoI (e.g., where
α = 0x10) is posted first, and a second PoI (e.g., where α′ =
0x20) is presented as ‘‘conflicting’’ by a VETO transaction,
while on another blockchain, the PoI where α = 0x20 is
posted first, and the PoI with α′ = 0x10 is posted in the VETO
transaction as ‘‘conflicting’’. In the following, we define a
behavior for the VETO transaction that still maintains consis-
tency, regardless of the order of PoIs.

The preconditions for VETO are that α refers to a PoI
already known to the blockchain, that the conflicting PoI is
valid, and that the two PoIs are actually conflicting.

The effects of VETO are as follows: (i) The sender of the
conflicting PoIs loses all PBTs, i.e., the balance is set to
zero to penalize such protocol-violating behavior. (ii) Any
PoI which has a non-expired validity period (i.e., every PoI
where t < t1) is canceled. This means that no FINALIZE

transaction will be permitted for this PoI, the transfer itself
will therefore not be executed, and no witness reward will be
assigned. Finally, (iii) a new contest is started, called the veto
contest. The veto contest is similar to a regular witness contest
in that its purpose is the propagation of information (in this
case, the information of conflicting PoIs).

We propose to use the same reward for the veto contest as
for the regular witness contest (in our case, 1 PBT). Since
all PBTs held by the sender are destroyed, and only 1 PBT
is assigned to the winner of the veto contest, all remaining
PBTs are lost. Furthermore, we propose the validity period
expiration of the veto contest, tVETO, to be defined as shown
in (12).

tVETO = max(t1, t ′1)+max(t1 − t0, t ′1 − t
′

0) (12)

The definition shown in (12) states that the veto contest
is valid until a point in time which is found by taking the
later expiration time of the conflicting PoIs (max(t1, t ′1)) and
adding the longer validity period (max(t1 − t0, t ′1 − t

′

0)). This
is done to ensure that sufficient time is available for the veto
contest. We note that this is an implementation detail and
other approaches (e.g., a fixed period) are also possible.

The veto contest is concluded by a FINALIZE-VETO transac-
tion, defined as shown in (13).

FINALIZE-VETO
[
α, α′

]
(13)

The effect of the FINALIZE-VETO transaction is similar to
that of the FINALIZE transaction, except that no actual transfer
is executed. The witness reward is again assigned to the veto

contestant—that is, a wallet posting aVETO transaction—with
the lowest ω signature in the VETO transaction. Similar to
FINALIZE, the FINALIZE-VETO transaction can be called by any-
one, in particular, the winning veto contestant has monetary
incentive in doing so.

IV. EVALUATION
The approach presented in Section III introduces transac-
tions which change the state of different blockchains within
a blockchain ecosystem, according to given rules. This
can be implemented using smart contracts, e.g., using the
Solidity language [27]—more specifically, the EVM—on the
Ethereum blockchain. We use Solidity to create a reference
implementation of the proposed protocol for evaluation pur-
poses. The prototype is available as Open Source software at
Github.3 However, other ways of implementing such transac-
tions exist, as we discuss in Section V.

In order to evaluate our approach, we investigate its func-
tionality, performance, and cost impact in an ecosystem of
blockchains with agents performing repeated token trans-
fers. We achieve these goals by using our reference imple-
mentation consisting of Solidity smart contracts, deploying
these smart contracts on a number of private Ethereum-based
blockchains, and using testing client software to perform
transfers with a given rate.

We ensure a reproducible and uniform ecosystem of
blockchains by using three geth nodes in Proof of
Authority (PoA) mode, creating three private blockchains.
We choose PoA to achieve an energy-efficient testing and
evaluation platform while being able to perform repeated
experiments. Note that the consensus algorithm, i.e., PoW,
PoA, or Proof of Stake (PoS), defines the behavior of
blockchain nodes between each other and maintains data
consistency in the network of a given blockchain [28]. How-
ever, the smart contract layer is independent of the consensus
algorithm. Therefore, our evaluation on PoA is directly appli-
cable to blockchains with any consensus algorithm, including
PoW.

The geth nodes used in our experiments can be config-
ured, for instance, with regard to block time and Gas limit.
For our evaluation, we have observed the behavior of the live
Ethereum blockchain (January 2019) and have configured
our nodes to follow this behavior. Therefore, our nodes are
configured to use a block time of 13 s on average, and a Gas
limit of 8million EthereumGas,mimicking the live Ethereum
chain. We use private chains instead of the Ethereum main
chain to enable a high number and low cost of repeatable
experiments in an automated fashion without depending on
external components, such as Ethereum nodes.

We use ten clients constantly and simultaneously initiat-
ing transfers within the blockchain ecosystem. This number
is chosen as a balance between feasible and reproducible
experiments and expected real-world conditions. While it is
small compared to evaluations of other classes of distributed

3https://github.com/pantos-io/dextt-prototype

111038 VOLUME 7, 2019



M. Borkowski et al.: Dextt

systems, we note that the lack of scalability of blockchain
technologies is a crucial issue in general, and is seen
as one of the main challenges for existing blockchain
technologies [29]. We refer to existing literature for a study
on how scalability of blockchains can be improved [30].

In our experimental ecosystem, each client constantly
transfers random amounts of PBTs to random wallets. If a
client owns too few PBTs for a transaction, no transaction is
performed until PBTs are available again. After a successful
transfer, the client waits for a random time between 15 s and
30 s. Afterwards, the process is repeated throughout the entire
experiment duration.

We perform two experiment series, as described in the
following sections. The first series is used to evaluate DeXTT
scalability and the impact of the transfer validity period,
and consists of a series of 30-minute experiments, where
each individual experiment uses an increased validity period.
The second series consists of 20 experiments, again with a
duration of 30 min each, used to measure the average cost of
a DeXTT transfer.

A. SCALABILITY AND TIMING
The DeXTT protocol requires one CLAIM transaction per
transfer, and for each transfer, one FINALIZE transaction per
blockchain. In addition, each contestant posts one CONTEST

transaction to each blockchain. We assume that candidates
which no longer have a chance to win the witness con-
test (because a candidate with a lower signature ω for the
given transaction is already known) do not post CONTEST

transactions to avoid cost. As stated in Section II-D, the uni-
formly distributed KECCAK256 algorithm is used for signa-
tures. Thus, on the average case, each CONTEST transaction
halves the space of remaining possible winning signatures
ω (because the expected value of the uniform distribution
is the arithmetic mean of the domain). Therefore, with each
CONTEST transaction, the likelihood of another candidate
existing with a lower ω is halved. Following from this,
on average, log2 n candidates will post a CONTEST transac-
tion, where n is the number of total observers.

Transfer time in the DeXTT protocol is directly impacted
by the validity period [t0, t1] chosen by the sender. We there-
fore first evaluate the impact of the validity period. Using too
short validity periods leads to corrupted transfers, i.e., trans-
fers which cause permanently inconsistent balances, since
observers cannot post CONTEST transactions in time. In such
scenarios, eventual consistency between blockchains is not
guaranteed. As stated above, we use a block time of 13 s,
therefore, we start our experiments with 10 s, and increase
the period by 5 s with each experiment. We then run our
blockchain ecosystem for 30 min using each validity period
and record the number of corrupted transactions. Note that
we have to reset the inconsistent balances for wallets partici-
pating in a corrupted transaction in order to be able to run the
experiments for 30 min.

Figure 2 shows the results of these experiments. Beyond
52 s, no corrupt transactions are observed. It becomes clear

FIGURE 2. Impact of validity period on transaction success.

TABLE 7. Cost analysis.

that using the reference implementation and waiting for
4 blocks (52 s) is sufficient for ensuring consistency. Between
1 and 3 blocks (13 s and 39 s, respectively), the amount of
corrupted transactions declines with a varying rate.

From this experiment, we conclude that using a validity
period with the length of at least 4 blocks (52 s) is sufficient
to maintain consistency using our reference implementation.

B. COST ANALYSIS OF DEXTT TRANSFERS
To estimate the cost incurred by DeXTT transfers, we run
the same experiment 20 times. Based on our previous exper-
iment, we choose 65 s (5 blocks, i.e., well above the deter-
mined limit of 52 s) as the duration of the validity period
in each transaction. We record the average cost of each
transaction. Table 7 shows an overview of the cost of the
individual transactions involved in a DeXTT transfer. For
each transaction, we show the mean cost, and its standard
deviation, both in thousands of Ethereum Gas (kGas), and in
USD. For this, we assume a Gas price of 10 Gwei (1 Ether=
109 Gwei = 1018 wei) and a price of Ether of 115.71 USD.
These values were obtained from the Ethereum live chain in
January 2019. Note that our implementation is optimized in
that CLAIM and CONTEST both use the same smart contract
function. Nevertheless, we distinguish the semantic differ-
ence (posting of new transfer for CLAIM, and participating in
a contest for CONTEST) in the results.
In the following, we assume m blockchains and n total

observers. For our calculation, we assume that all observers
monitor all blockchains, and post CONTEST transactions if
it benefits them. A regular DeXTT transfer (i.e., one which
does not contain a conflicting PoI, and therefore requires no
veto) consists of one CLAIM transaction (on the target chain),
log2 n CONTEST transactions (as discussed in Section IV-A)

VOLUME 7, 2019 111039



M. Borkowski et al.: Dextt

on each blockchain, i.e., m log2 n CONTEST transactions, and
m FINALIZE transactions. The CLAIM transaction is posted by
the receiver, and each CONTEST transactions is posted by an
observer (thus becoming a contestant). While the FINALIZE

transaction can be posted by any party, posting it is bene-
ficial to the receiver (because it finalizes the transfer to the
receiver), and therefore it can be expected that the receiver
will bear its cost to finalize the transfer.

The expected cost in kGas for a DeXTT transfer are as
follows: The receiver bears the cost for one CLAIM trans-
action (57.7 kGas) and m FINALIZE transactions (45.5 kGas
each). Each of the log2 n expected observers posting trans-
actions bears the cost for m CONTEST transactions (81.5 kGas
each). The sender does not bear any cost.

Assuming a blockchain ecosystem of 10 blockchains,
the total transaction cost for the receiver is 0.59 USD. Each
of the log2 n observers posting transactions bears cost of
0.94 USD. These numbers represent our current reference
implementation and can be regarded as an upper bound for
DeXTT transfer cost. Any additional optimization to the
smart contract code has the potential to further reduce the Gas
cost of the individual transactions, and therefore, of the over-
all DeXTT transfer.

Additionally, these numbers allow us to reason about the
economic impact of a currency using DeXTT transactions.
Observers pay transaction cost of 0.94 USD, and potentially
receive a witness reward, currently defined as 1 PBT. The
chance of an observer winning is 1

n , however, according to
the discussion in Section IV-A on average, only log2 n out
of all n observers are expected to post CONTEST transactions.
Hence, the likelihood for an observer posting a transaction to
win the contest is log2 n

n .
Therefore, the investment for each observer is 0.94 USD,

the contest reward is 1 PBT, and the winning likelihood
is log2 n

n . From this, it follows that in order for the observer to
have incentive to post CONTEST transactions in an ecosystem
of m = 10 blockchains, the inequation shown in (14) must
hold, where p is the price of 1 PBT in USD.

log2 n
n

p > 0.94 [USD] (14)

In other words, the price of 1 PBT in USD divided by the
number of observers must be higher than 0.94. Assuming
n = 10 observers, the PBT price must be above 2.83 USD.
Assuming n = 100, the PBT price must be above 14.15 USD.
For n = 1000, the PBT price must be above 94.32 USD.
This implies that as long as these price limits are observed,
the DeXTT protocol is economically feasible. Ensuring this
property is not in the scope of this paper, as the price of any
asset is determined by supply and demand, and therefore the
perceived value of PBT influences its price.

Note that these numbers assume m = 10 blockchains, and
a fixed reward of 1 PBT. A pro rata reward, e.g., 1% of the
transferred PBTs, would reduce the required PBT price but
would also increase the complexity of calculating the witness
incentive. Furthermore, a dynamic reward adaption based

on the number of observers, similar to the variable mining
rewards in Bitcoin, or a value selected by the sender, similar
to the Gas price in Ethereum, can also be used to reduce the
required PBT price, and therefore incentivize observers.

V. RELATED WORK
As discussed in Section I, blockchain interoperability can
be used to address the fragmentation of the blockchain
research field. Yet, to the best of our knowledge, contempo-
rary approaches only cover limited parts of the functionality
needed in order to achieve blockchain interoperability.

Initially, the only way to achieve any interoperability
between different blockchains was to trade assets (tokens
or native currencies) on centralized exchanges, which
provide marketplace functionalities. Later on, decentral-
ized exchanges such as Bisq [31] or 0x [32] emerged.
Most recently, the Republic protocol [33] has been pro-
posed, which includes a decentralized dark pool exchange,
i.e., details about an exchange are kept secret.

All of these approaches, however, are concerned with the
exchange of assets, generally using atomic swaps [34] for
trustless asset exchange. In such an atomic swap, for instance,
one party might transfer Bitcoin to another party, while the
other party transfers Ether to the first, and each asset remains
on its blockchain. In contrast, DeXTT can be used to transfer
a single type of asset, and to ensure that the resulting bal-
ances are synchronized across blockchains. In our approach,
no swap partner is required.

A different approach to tackle blockchain interoperability
is presented in PolkaDot [35]. PolkaDot aims to provide a
set of tools and techniques for developing applications which
share security across blockchains and use an ‘‘inter-chain
communication protocol’’ (ICMP). PolkaDot uses separate
blockchains attached to a trusted blockchain—these sepa-
rate blockchains are called parachains—and defines a set
of various actors (validators, collators, and fishermen) to
implement its interoperability features. In contrast, we build
on top of existing blockchains, do not assume trust in any
particular blockchain, and only require one type of actors,
i.e., observers, which may become a winning witness during
the contest. This means that while applications must be built
on top of PolkaDot and use the PolkaDot ecosystem to use
ICMP,DeXTT is a protocol which can be used as an extension
of existing solutions, and the blockchains used can be chosen
by the user.

To the best of our knowledge, the approach closest to the
work at hand is Metronome [36], which claims to enable
cross-blockchain transfers of Metronome tokens (MET).
While the authors define a Proof of Exit, which can be used
to claim tokens on the destination blockchain, no further
technical details about this process are discussed. It remains
unclear how Metronome tackles challenges like the XPP.
In addition, Metronome only allows cross-blockchain trans-
fers of MET tokens, while our approach allows arbitrary
tokens to be transferred as long as the DeXTT protocol is
used.

111040 VOLUME 7, 2019



M. Borkowski et al.: Dextt

The DeXTT protocol presented in this paper is based on
our own former work. The XPP and a precursor the DeXTT
protocol have initially been discussed in [12]. Furthermore,
in [21], we have conceptually described the deterministic
witness selection approach. The work at hand significantly
extends this former work by providing a concrete implemen-
tation of these approach within the DeXTT protocol, and
using a single balance across all blockchains for each wallet,
instead of individual per-blockchain balances.

While in our DeXTT prototype, we use smart contracts to
implement the transactions defined in Section III, other meth-
ods exist. For instance, when considering the implementation
on blockchains without smart contract support, one might
add backwards-compatible layers on top of such blockchains,
providing the required capabilities for the transactions pre-
sented in this work.

A similar approach is used by OmniLayer [4] or
CounterParty [3], [37], which add such layers for enhanced
features. For this work, however, we use our reference
Solidity implementation of DeXTT for evaluation and cost
analysis, postponing the integration of approaches such as
OmniLayer or CounterParty to future work. Nevertheless,
our current evaluation is sufficient to demonstrate the overall
functionality of the DeXTT protocol using Solidity smart
contracts and the conceptual applicability.

VI. CONCLUSION
In this paper, we have presented DeXTT, a protocol for
transferring cross-blockchain tokens tradeable on multiple
blockchains. This reduces dependency on a single blockchain
and risk, e.g., of selecting a blockchain which later suf-
fers from a security breach. DeXTT can be used for the
exchange of any assets on any number of blockchains.
This can be used for a cross-blockchain cryptocurrency, but
also for other assets, possibly representing rights to real
assets.

As a transfer protocol, DeXTT ensures eventual consis-
tency of balances across blockchains, and prohibits double
spending. We have presented the protocol, implemented it in
Solidity, and provided an experimental evaluation, highlight-
ing its performance with regard to time and cost.

Our evaluation shows that the reference implementation of
DeXTT requires at least 4 blocks for maintaining eventual
consistency. Furthermore, we show that a DeXTT transfer
using our implementation costs 103.2 kGas for the receiver,
and 81.5 kGas for any contributing observer. We also provide
an analysis of the economic impact of the witness rewards
based on the parameters of the multi-blockchain ecosystem
used.

In future work, we will address the main limitation of our
current evaluation by implementing DeXTT using additional
technologies such as OmniLayer and therefore evaluate the
performance of DeXTT in a blockchain ecosystem consisting
of mixed blockchain types. Furthermore, we aim to imple-
ment DeXTT on other native smart contract platforms such
as EOS.IO [38]. In addition, we aim to evaluate more refined

approaches for the veto contest, which can be used to relax
the currently strict requirements towards signed PoIs.

ACKNOWLEDGMENT
The authors would like to thank Christoph Ritzer for numer-
ous fruitful discussions regarding the lemma of rooted
blockchains.

REFERENCES
[1] A. Zohar, ‘‘Bitcoin: Under the hood,’’ Commun. ACM, vol. 58, no. 9,

pp. 104–113, 2015.
[2] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Accessed:

May 31, 2019.[Online]. Available: https://bitcoin.org/bitcoin.pdf
[3] Counterparty. Accessed: May 31, 2019. [Online]. Available:

https://counterparty.io/docs/
[4] J. Willett, M. Hidskes, D. Johnston, R. Gross, and M. Schneider. Omni

Protocol Specification. Accessed: May 31, 2019. [Online]. Available:
https://github.com/OmniLayer/spec

[5] Litecoin. Accessed: Feb. 15, 2019. [Online]. Available: https://litecoin.org/
[6] G. Wood. Ethereum: A Secure Decentralised Generalised

Transaction Ledger. Accessed: May 31, 2019. [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[7] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts for
the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303, 2016.

[8] T. M. Fernández-Caramés and P. Fraga-Lamas, ‘‘A review on the
Use of blockchain for the Internet of Things,’’ IEEE Access, vol. 6,
pp. 32979–33001, 2018.

[9] H. D. Bandara, X. Xu, and I. Weber, ‘‘Patterns for Blockchain Migra-
tion,’’ 2019, arXiv:1906.00239. [Online]. Available: https://arxiv.org/abs/
1906.00239s

[10] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, ‘‘Blockchain,’’ Bus. Inf.
Syst. Eng., vol. 59, no. 3, pp. 183–187, Mar. 2017.

[11] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, ‘‘A survey on the
security of blockchain systems,’’ Future Gener. Comput. Syst., to be
published. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X17318332

[12] M. Borkowski, C. Ritzer, D. McDonald, and S. Schulte. Caught in
Chains: Claim-First Transactions for Cross-Blockchain Asset Transfers.
Accessed: May 31, 2019. [Online]. Available: https://dsg.tuwien.ac.at/
projects/tast/pub/tast-white-paper-2.pdf

[13] M. Borkowski, D. McDonald, C. Ritzer, and S. Schulte. Towards
Atomic Cross-Chain Token Transfers: State of the Art and Open Ques-
tions Within TAST. Accessed: May 31, 2019. [Online]. Available:
https://dsg.tuwien.ac.at/projects/tast/pub/tast-white-paper-1.pdf

[14] M. Ali, J. C. Nelson, R. Shea, and M. J. Freedman, ‘‘Blockstack: A global
naming and storage system secured by blockchains,’’ in Proc. USENIX
Annu. Tech. Conf., 2016, pp. 181–194.

[15] M. Beck. Into the Ether With Ethereum Classic. Accessed: May 31, 2019.
[Online]. Available: https://ethereumclassic.github.io/assets/etc-thesis.pdf

[16] E. Duffield and D. Diaz. Dash: A Privacy-Centric Crypto-Currency.
Accessed: May 31, 2019. [Online]. Available: https://github.com/dashpay/
dash/wiki/Whitepaper

[17] WAVES Whitepaper. Accessed: Apr. 13, 2018. [Online]. Available:
https://wesdewayne.files.wordpress.com/2017/05/waves-whitepaper.pdf

[18] M. Conoscenti, A. Vetró, and J. C. DeMartin, ‘‘Blockchain for the Internet
of Things: A systematic literature review,’’ in Proc. IEEE/ACS 13th Int.
Conf. Comput. Syst. Appl., Dec. 2016, pp. 1–6.

[19] T. Hukkinen, ‘‘Reducing blockchain transaction costs in a distributed
energy market application,’’ M.S. Thesis, Dept. Comput. Sci., Aalto Univ.,
Helsinki, Finland, 2018.

[20] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul./Oct. 1948.

[21] M. Borkowski, C. Ritzer, and S. Schulte. Deterministic Witnesses for
Claim-First Transactions. Accessed: May 31, 2019. [Online]. Available:
https://dsg.tuwien.ac.at/projects/tast/pub/tast-white-paper-3.pdf

[22] D. Johnson, A. Menezes, and S. Vanstone, ‘‘The elliptic curve dig-
ital signature algorithm (ECDSA),’’ Int. J. Inf. Secur., vol. 1, no. 1,
pp. 36–63, Aug. 2001.

[23] Y. Hirai, ‘‘Defining the ethereum virtual machine for interactive theo-
rem provers,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur., 2017,
pp. 520–535.

VOLUME 7, 2019 111041



M. Borkowski et al.: Dextt

[24] A. Gholipour and S. Mirzakuchaki, ‘‘A pseudorandom number generator
with keccak hash function,’’ Int. J. Comput. Electr. Eng., vol. 3, no. 6,
pp. 896–899, Dec. 2011.

[25] H. Gilbert and H. Handschuh, ‘‘Security analysis of SHA-256 and sisters,’’
in Proc. Int. Workshop Sel. Areas Cryptogr., 2003, pp. 175–193.

[26] P. R. Berg and M. Milton. Chronos: An Open Protocol for
Streaming Money. Accessed: May 31, 2019. [Online]. Available:
http://chronosprotocol.org/chronos-white-paper.pdf

[27] C. Dannen, Introducing Ethereum Solidity. New York, NY, USA: Springer,
2017.

[28] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, ‘‘An overview
of blockchain technology: Architecture, consensus, and future trends,’’
in Proc. IEEE Int. Congr. Big Data (BigData Congr.), Jun. 2017,
pp. 557–564.

[29] J. Herrera-Joancomartí and C. Pérez-Solá, ‘‘Privacy in bitcoin transac-
tions: New challenges from blockchain scalability solutions,’’ inModeling
Decisions for Artificial Intelligence. New York, NY, USA: Springer, 2016,
pp. 26–44.

[30] M. Vukolić, ‘‘The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication,’’ in Proc. Int. Workshop Open Problems Netw. Secur.,
2015, pp. 112–125.

[31] C. Beams. The Peer-to-Peer Bitcoin Exchange. Accessed:
May 31, 2019. [Online]. Available: https://github.com/bisq-network/bisq-
docs/blob/master/exchange/whitepaper.adoc

[32] W. Warren and A. Bandeali. 0x: An Open Protocol for Decentralized
Exchange on the Ethereum Blockchain. Accessed: May 31, 2019. [Online].
Available: https://0xproject.com/pdfs/0x_white_paper.pdf

[33] T. Zhang and L. Wang. Republic Protocol: A Decentralized Dark
Pool Exchange Providing Atomic Swaps for Ethereum-Based
Assets and Bitcoin. Accessed: May 31, 2019. [Online]. Available:
https://releases.republicprotocol.com/whitepaper/1.0.0/whitepaper_1.0.0.
pdf

[34] M. Herlihy, ‘‘Atomic cross-chain swaps,’’ in Proc. ACM Symp. Princ.
Distrib. Comput., 2018, pp. 245–254.

[35] G. Wood. PolkaDot: Vision for a Heterogeneous Multi-Chain
Framework. Accessed: May 31, 2019. [Online]. Available:
https://polkadot.network/PolkaDotPaper.pdf

[36] Metronome: Owner’s Manual. Accessed: May 31, 2019. [Online]. Avail-
able: https://www.metronome.io/pdf/owners_manual.pdf

[37] Counterparty Protocol Specification. Accessed: May 31, 2019. [Online].
Available: https://github.com/Counterparty
XCP/Documentation/blob/master/Developers/protocol_specification.md

[38] EOS.IO Technical White Paper v2. Accessed: Apr. 8, 2019. [Online].
Available: https://github.com/EOSIO/Documen
tation/blob/master/TechnicalWhitePaper.md

MICHAEL BORKOWSKI received the master’s
degree in software engineering and Internet com-
puting from TU Wien, in 2015, where he is
currently pursuing the Ph.D. degree with the
Distributed Systems Group. He is currently a
Research Scientist with the German Aerospace
Center (DLR), Braunschweig, Germany. The core
area of his research is using predictive technolo-
gies in the field of distributed systems, with a focus
on machine learning. He is also contributing to the
TAST Research Project.

MARTEN SIGWART received the master’s degree
in computer science from the Technische Univer-
sität Berlin, in 2018. He is currently pursuing the
Ph.D. degree with the Distributed Systems Group,
TU Wien, where he is also a Project Assistant.
During his master’s degree, he participated in the
Erasmus Program at TU Wien. He is contributing
to the TAST Research Project.

PHILIPP FRAUENTHALER received the mas-
ter’s degree in software engineering and Internet
computing from TU Wien, in 2018, where he
is currently pursuing the Ph.D. degree with the
Distributed Systems Group. He is also a Project
Assistant with the Distributed Systems Group,
TU Wien. Before joining the Distributed Systems
Group in February 2019, he worked for five years
as a Software Engineer, developing enterprise soft-
ware for insurances. He is also contributing to the
TAST Research Project.

TANELI HUKKINEN is currently a Software
Engineer with BitpandaGmbH.He is also an Engi-
neer in the blockchain field and is contributing
to the TAST Research Project within Pantos as a
Scientific Advisor and an Expert on blockchains.

STEFAN SCHULTE is currently an Associate Pro-
fessor with the Faculty of Informatics, TU Wien.
His research interests include the areas of cloud
computing and the Internet of Things, and the
application of blockchain technologies for data
provenance and process enactment. Findings from
his research have been published in more than
100 refereed scholarly publications.

111042 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	NOTATIONS AND CONVENTIONS
	THE CROSS-BLOCKCHAIN PROOF PROBLEM
	DEFINITIONS
	CROSS-BLOCKCHAIN PROOFS
	IMPLICATIONS

	CROSS-BLOCKCHAIN BALANCE CONSISTENCY
	CRYPTOGRAPHIC SIGNATURES AND HASHES

	DECENTRALIZED CROSS-BLOCKCHAIN TRANSFERS
	TRANSFER INITIATION
	WITNESS CONTEST
	DETERMINISTIC WITNESS SELECTION
	PREVENTION OF DOUBLE SPENDING

	EVALUATION
	SCALABILITY AND TIMING
	COST ANALYSIS OF DEXTT TRANSFERS

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	MICHAEL BORKOWSKI
	MARTEN SIGWART
	PHILIPP FRAUENTHALER
	TANELI HUKKINEN
	STEFAN SCHULTE


