
2266 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 11, NOVEMBER 2019

Blockchain-Enabled Smart Contracts: Architecture,
Applications, and Future Trends

Shuai Wang , Liwei Ouyang, Yong Yuan , Senior Member, IEEE, Xiaochun Ni, Xuan Han,

and Fei-Yue Wang , Fellow, IEEE

Abstract—In recent years, the rapid development of cryptocur-
rencies and their underlying blockchain technology has revived
Szabo’s original idea of smart contracts, i.e., computer protocols
that are designed to automatically facilitate, verify, and enforce
the negotiation and implementation of digital contracts without
central authorities. Smart contracts can find a wide spectrum
of potential application scenarios in the digital economy and
intelligent industries, including financial services, management,
healthcare, and Internet of Things, among others, and also have
been integrated into the mainstream blockchain-based develop-
ment platforms, such as Ethereum and Hyperledger. However,
smart contracts are still far from mature, and major technical
challenges such as security and privacy issues are still awaiting
further research efforts. For instance, the most notorious case
might be “The DAO Attack” in June 2016, which led to more
than $50 million Ether transferred into an adversary’s account.
In this paper, we strive to present a systematic and compre-
hensive overview of blockchain-enabled smart contracts, aiming
at stimulating further research toward this emerging research
area. We first introduced the operating mechanism and main-
stream platforms of blockchain-enabled smart contracts, and
proposed a research framework for smart contracts based on
a novel six-layer architecture. Second, both the technical and
legal challenges, as well as the recent research progresses, are
listed. Third, we presented several typical application scenarios.
Toward the end, we discussed the future development trends
of smart contracts. This paper is aimed at providing helpful
guidance and reference for future research efforts.

Manuscript received November 8, 2018; revised December 24, 2018;
accepted January 18, 2019. Date of publication February 15, 2019; date
of current version October 15, 2019. This work was supported in part by
the National Natural Science Foundation of China under Grant 71472174,
Grant 61533019, Grant 71232006, Grant 61233001, Grant 61702519, and
Grant 71702182, and in part by the Qingdao Think-Tank Foundation on
Intelligent Industries. This paper was recommended by Associate Editor
S. Song. (Corresponding author: Yong Yuan.)

S. Wang and L. Ouyang are with the State Key Laboratory for
Management and Control of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China, and also with the
University of Chinese Academy of Sciences, Beijing 100049, China (e-mail:
wangshuai2015@ia.ac.cn; ouyangliwei2018@ia.ac.cn).

Y. Yuan, X. Ni, and X. Han are with the State Key Laboratory for
Management and Control of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China, and also with the
Parallel Blockchain Technology Innovation Center, Qingdao Academy of
Intelligent Industries, Qingdao 266109, China (e-mail: yong.yuan@ia.ac.cn;
xiaochun.ni@ia.ac.cn; xuan.han@ia.ac.cn).

F.-Y. Wang is with the State Key Laboratory for Management and Control
of Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China, also with the Parallel Blockchain Technology
Innovation Center, Qingdao Academy of Intelligent Industries, Qingdao
266109, China, and also with the Research Center of Military Computational
Experiments and Parallel Systems, National University of Defense
Technology, Changsha 410073, China (e-mail: feiyue.wang@ia.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2895123

Index Terms—Blockchain, parallel blockchain, six-layer archi-
tecture, smart contracts.

I. INTRODUCTION

THE TERM “smart contract” was first coined in mid-
1990s by computer scientist and cryptographer Szabo,

who defined a smart contract as “a set of promises, spec-
ified in digital form, including protocols within which the
parties perform on these promises [1].” In his famous exam-
ple, Szabo analogized smart contracts to vending machines:
machines take in coins, and via a simple mechanism (e.g.,
finite automata), dispense change and product according to
the displayed price. Smart contracts go beyond the vending
machine by proposing to embed contracts in all sorts of prop-
erties by digital means [2]. Szabo also expected that through
clear logic, verification and enforcement of cryptographic pro-
tocols, smart contracts could be far more functional than their
inanimate paper-based ancestors. However, the idea of smart
contracts did not see the light till the emergence of blockchain
technology, in which the public and append-only distributed
ledger technology (DLT) and the consensus mechanism make
it possible to implement smart contract in its true sense.

Generally speaking, smart contracts can be defined as the
computer protocols that digitally facilitate, verify, and enforce
the contracts made between two or more parties on blockchain.
As smart contracts are typically deployed on and secured by
blockchain, they have some unique characteristics. First, the
program code of a smart contract will be recorded and veri-
fied on blockchain, thus making the contract tamper-resistant.
Second, the execution of a smart contract is enforced among
anonymous, trustless individual nodes without centralized con-
trol, and coordination of third-party authorities. Third, a smart
contract, like an intelligent agent, might have its own cryp-
tocurrencies or other digital assets, and transfer them when
predefined conditions are triggered [3].

It is worth noting that Bitcoin1 is widely recognized as the
first cryptocurrency that support basic smart contracts, in the
sense that its transactions will be validated only if certain con-
ditions are satisfied. However, designing smart contract with
complex logic is not possible due to the limitations of Bitcoin
scripting language that only features some basic arithmetic,
logical, and crypto operations.

1Bitcoin. https://bitcoin.org/.

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2358-7532
https://orcid.org/0000-0001-8310-2712
https://orcid.org/0000-0001-9185-3989

WANG et al.: BLOCKCHAIN-ENABLED SMART CONTRACTS: ARCHITECTURE, APPLICATIONS, AND FUTURE TRENDS 2267

Ethereum2 is the first public blockchain platform that
supports advanced and customized smart contracts with the
help of Turing-complete virtual machine called Ethereum vir-
tual machine (EVM). EVM is the runtime environment for
smart contracts, and every node in the Ethereum network
runs an EVM implementation and executes the same instruc-
tions. Several high-level programming languages, such as
Solidity3 and Serpent,4 can be used to write Ethereum smart
contracts, and the contract code is compiled down to EVM
bytecode and deployed on the blockchain for execution.
Ethereum is currently the most popular development plat-
form for smart contracts, and can be used to design various
kinds of decentralized applications (DApps), e.g., digital rights
management, crowdfunding, gambling, etc.

Although smart contracts have made great progresses in
recent years, it still faces many challenges. A well-known
event is that in June 2016, The DAO, a decentralized investor-
directed venture capital fund secured by Ethereum blockchain,
was attacked by exploiting a severe smart contract bug called
“Recursive call.” The attacker drained more than $50 million
Ether into a “child DAO” that has the same structure as The
DAO. At last, a hard fork of the Ethereum was implemented to
claw back the funds from the attacker. However, this hard fork
was controversial because it violates the code is law principle
in the spirit of blockchain technology. In addition to the secu-
rity problem, other challenges include performance, privacy,
legal issues, etc.

The main aim of this paper is to offer a comprehensive
overview of smart contract research, including the oper-
ating mechanism, basic framework, application scenarios,
challenges, recent progresses, future trends, etc.

The rest of this paper is organized as follows. Section II
systematically introduces the smart contracts, including the
operating mechanism and mainstream development platforms,
and a basic research framework which employs a six-layer
architecture is proposed. Section III summarizes the current
challenges faced by smart contracts and the recent research
progresses. Section IV presents several typical application sce-
narios of smart contracts, e.g., finance, management, Internet
of Things (IoT), and energy. Section V discusses the future
development trends. Section VI concludes this paper.

II. SMART CONTRACTS

In this section, we will give an overview of smart contracts.
First, we make a brief introduction to blockchain, and then
present the operational mechanism of smart contracts based
on two mainstream platforms—Ethereum and Hyperledger
Fabric. We also propose a basic research framework of smart
contracts.

A. Brief Introduction to Blockchain

The concept of blockchain originated from Bitcoin, which
is a cryptocurrency invented by an unknown people or group
of people using the pseudonym Nakamoto in 2008 [4].

2Ethereum. https://www.ethereum.org/.
3Solidity. http://solidity.readthedocs.io/en/latest/.
4Serpent. https://github.com/ethereum/wiki/wiki/Serpent.

Fig. 1. Operational mechanism of smart contract.

Blockchain is a continuously growing list of records, called
blocks, which are linked and secured using cryptography.
Blockchain adopts the P2P protocol that can tolerate single
point of failure. The consensus mechanism ensures a common,
unambiguous ordering of transactions and blocks, and guaran-
tees the integrity and consistency of the blockchain across geo-
graphically distributed nodes. By design, blockchain has such
characteristics as decentralization, integrity, and auditabil-
ity [5]. According to Xu et al. [6], blockchain can serve as a
novel kind of software connector, which should be considered
as a possible decentralized alternative to the existing central-
ized shared data storage. In addition, based on different levels
of access permission, blockchains can be divided into three
types: 1) public blockchain (such as Bitcoin and Ethereum);
2) consortium blockchain (such as Hyperledger5 and Ripple);6

and 3) private blockchain. Blockchain serves as the platform
for smart contracts to be hosted and executed on.

Smart contracts are introduced as computer programs run-
ning across the blockchain network and can express triggers,
conditions, and business logic to enable complicatedly pro-
grammable transactions [6]. In the next section, we will
discuss the operational mechanism of smart contracts in
detail.

B. Operational Mechanism of Smart Contracts

The operational mechanism of smart contracts is shown in
Fig. 1. Smart contracts generally have two attributes: 1) value
and 2) state. The triggering conditions and the correspond-
ing response actions of the contract terms are preset using
triggering condition statements such as “If-Then” statements.
Smart contracts are agreed upon and signed by all parties
and submitted in transactions to the blockchain network, then
transactions are broadcasted via the P2P network, verified by

5Hyperledger. https://www.hyperledger.org/.
6Ripple. https://ripple.com/.

2268 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 11, NOVEMBER 2019

Fig. 2. Overview of workflow in the Ethereum network [8].

the miners and stored in the specific block of the blockchain.
The creators of the contracts get the returned parameters (e.g.,
contract address), then users can invoke a contract by sending
a transaction. Miners are motivated by the system’s incen-
tive mechanism and will contribute their computing resources
to verify the transaction. More specially, after the miners
receive the contract creation or invoking transaction, they cre-
ate contract or execute contract code in their local Sandboxed
Execution Environment [(SEE), e.g., EVM]. Based on the
input of trusted data feeds (also known as, Oracles) and the
system state, the contract determines whether the current sce-
nario meets the triggering conditions. If the conditions are met,
the response actions are strictly executed. After a transaction
is validated, it is packaged into a new block. The new block is
chained into the blockchain once the whole network reaches
a consensus.

Next, we take Ethereum and Hyperledger Fabric as exam-
ples to introduce the operational process of smart contracts.

1) Ethereum: Ethereum is currently the most widely used
smart contracts development platform that can be viewed as
a transaction-based state machine: it begins with a genesis
states and incrementally executes transactions to morph it into
some final states. It is the final states which we accept as the
canonical “version” in the world of Ethereum [7]. Unlike the
UTXO model of Bitcoin, Ethereum introduces the concept of
accounts. There are two types of accounts: 1) externally owned
accounts (EOAs) and 2) contract accounts. The difference is
that the former is controlled by private keys without code asso-
ciated with them, while the latter is controlled by their contract
code with associated code.

Users can only initiate a transaction through an EOA. The
transaction can include binary data (payload) and Ether. If
the recipient of a transaction is the zero-account ∅, a smart
contract is created. Or if the recipient is a contract account, the
account will be activated and its associated code is executed
in the local EVM (the payload is provided as input data) [8].
The transaction is then broadcast to the blockchain network
where miners will verify it, as shown in Fig. 2.

In order to avoid issues of network abuse and to sidestep
the inevitable problems stemming from Turing completeness,
all programmable computations (e.g., creating contracts, mak-
ing message calls, utilizing and accessing account storage,
and executing operations in the virtual machine) in Ethereum
is subject to fees—a reward for miners who contribute their

Fig. 3. Transaction workflow of Hyperledger Fabric.7

computing resources. The unit used to measure the fees
required for the computations is called gas [7].

2) Hyperledger Fabric: Hyperledger Fabric8 is a block-
chain framework implementation and one of the Hyperledger
projects hosted by The Linux Foundation. Rather than the pub-
lic blockchain, such as Bitcoin and Ethereum that anybody can
participate in the network, Hyperledger Fabric is permissioned
because only a collection of business-related organizations can
join in through a membership service provider, and its network
is built up from the peers who are owned and contributed by
those organizations. Peers are hosts for ledgers and chaincodes
(smart contracts). The ledger is the sequenced, tamper-resistant
record of transactions/state transitions. State transition is a
result of chaincode invocation (transaction). Each transaction
results in a set of asset key–value pairs that are committed to
the ledger as creates, updates, or deletes. As shown in Fig. 3,
the transaction workflow of Hyperledger Fabric consists of
three phases as follows.

1) Proposal: An application sends a transaction proposal
to different organizations’ endorsing peers (also called
endorsers who validate transactions against endorsement
policies and enforce the policies). The proposal is a
request to invoke a chaincode function so that data can
be read and/or written to the ledger. The transaction
results include a response value, read set, and write set.
The set of these values, along with the endorsers’ sig-
natures are returned to the application as a transaction
proposal response.

2) Packaging: The application verifies the endorsers’ signa-
tures and checks if the proposal responses are the same.
Then, the application submits the transaction to order-
ing service (orderer) to update the ledger. The orderer
sorts the transactions it received from the network, and
packages batches of transactions into a block that ready
for distribution back to all peers connected to it.

3) Validation: The peers connected to the orderer vali-
date every transaction within the block to ensure that
it has been consistently endorsed by required organiza-
tions according to the endorsement policy. It is worth
noting that this phase does not require the running of
chaincode—this is only done in proposal phase. After

7Hyperledger Fabric Docs. http://hyperledger-fabric.readthedocs.io/en/
release-1.1/peers/peers.html.

8Hyperledger Fabric. https://www.hyperledger.org/projects/fabric.

WANG et al.: BLOCKCHAIN-ENABLED SMART CONTRACTS: ARCHITECTURE, APPLICATIONS, AND FUTURE TRENDS 2269

validation, each peer appends the block to the chain,
and the ledger is updated.

Ethereum and Hyperledger Fabric differ in the following
aspects. First, Ethereum is a public blockchain platform, while
Hyperledger Fabric is a consortium blockchain infrastruc-
ture in that only a predefined community of participants are
permissioned to join the network. Comparatively speaking,
Hyperledger Fabric has high degrees of scalability, resilience,
and confidentiality as it provides a modular architecture with
a delineation of roles between the nodes (e.g., endorsers
and orderers) and configurable consensus and membership
services. Second, in Hyperledger Fabric, there is no built-in
cryptocurrency or fuel (such as Ether and gas in Ethereum).
Third, the chaincode in Hyperledger only defines a set of
assets which are presented as key–value pairs, and provides
the functions for operating on the assets and changing their
states. Last, for contract code execution, the contract code in
Ethereum is included in a transaction which is propagated in
the P2P network, and any miner who receives this transac-
tion can execute it in their local virtual machine. However, in
Hyperledger Fabric, the chaincode is actually hosted by peer
nodes (peers). When a transaction is created by the application,
the transaction is only executed and signed by specified peers
(endorsing peers). After receiving the application’s transaction
proposal, each of these endorsing peers independently executes
it by invoking the chaincode to which the transaction refers.
For security, chaincode runs within a container environment
(e.g., Docker) for isolation.

It is worth mentioning that the intersection between
Ethereum and Hyperledger is widening. For instance, the
Hyperledger Burrow project that runs under Tendermint con-
sensus engine has begun to support running Ethereum smart
contracts on Fabric using Hyperledger Fabric EVM chaincode
plugin.

C. Basic Research Framework of Smart Contracts

According to the operational mechanism of smart contracts,
we summarize the life-cycle of a smart contract into five stages:
1) negotiation; 2) development; 3) deployment; 4) mainte-
nance; and 5) learning and self-destruction. Based on this
life-cycle, we propose a basic research framework of smart
contracts. The framework also refers to several previous litera-
tures. For example, Risius and Spohrer [9] presented a research
framework to structure the insights of the current body of
research on blockchain technology. Xu et al. [10] proposed a
taxonomy to classify and compare blockchains and blockchain-
based systems. The taxonomy captures major architectural
characteristics of blockchains and the impact of different
design decisions, which helps with important architectural
considerations about the performance and quality attributes of
blockchain-based systems [10]. Glaser [11] developed a com-
prehensive conceptual framework of blockchain systems and
further divided blockchain systems into two layers of code,
namely, fabric layer and application layer.

As shown in Fig. 4, the proposed research framework
employs a six-layer architecture, namely, infrastructures
layer, contracts layer, operations layer, intelligence layer,

Fig. 4. Basic research framework of smart contracts.

manifestations layer, and applications layer from the bottom
up. The details are as follows.

1) Infrastructures Layer: The infrastructures layer encapsu-
lates all the infrastructures that supports smart contracts
and their applications, including the trusted develop-
ment environments, trusted execution environments, and
trusted data feeds (Oracles). To a certain extent, the
choice of these infrastructures will affect smart con-
tracts’ design patterns and contract attributes.

a) Trusted Development Environments: In the pro-
cess of smart contracts development, deployment,
and invoking, a variety of development tools are
involved, e.g., programming languages, integrated
development environments (IDEs), development
frameworks, clients, wallets, etc. Taking the wal-
let as an example, in addition to being a digital
asset management tool, it usually assumes func-
tions, such as being a boot node, deploying a
contract, and invoking a contract.

b) Trusted Execution Environments: Blockchain pro-
vides the trusted execution environment for smart
contracts. The execution of the smart contracts
rely on blockchain’s key components, such as con-
sensus algorithm, incentive mechanism, and P2P
network, and the final execution results will be
recorded in the distributed ledger maintained by all
nodes. Different consensus algorithms and incen-
tive mechanisms will affect the design pattern, exe-
cution efficiency and security of smart contracts.
For example, the development and deployment of
smart contracts in Ethereum must consider the fuel
consumption to avoid denial-of-service attacks and
unnecessarily high costs caused by massive call-
ing of dead code, opaque predicates, and expensive
operations in a loop and other gas-costly opera-
tions, as well as the out of gas exception caused
by gas shortage.

2270 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 11, NOVEMBER 2019

c) Trusted Data Feeds (Oracles): In order to guar-
antee the security of blockchain network, smart
contracts are generally executed in SEE (e.g., EVM
in Ethereum and Docker container in Hyperledger
Fabric), which is not allowed to import external
information. Hence, smart contract needs trusted
data feeds (Oracles) to provide external states about
the real world in the form of a transaction (because
any information that is not generated by a trans-
action has to be introduced as data attached to
a transaction [11]) in a secure and trusted man-
ner, thereby ensuring the deterministic of contract
execution results.

2) Contracts Layer: The contracts layer encapsulates the
static contract data, including contract terms, scenario-
response rules, and interaction criteria. Thus, this layer
can be regarded as the static database of smart contracts
which includes all the rules about contract invocation,
execution, and communication. When a smart contract
is being designed, at first all parties (contractors) shall
negotiate and determine the contract terms which may
involve legal provisions, business logics, and intention
agreements. Then, programmers use software engineer-
ing technology, such as algorithm design and design pat-
tern to translate the contract terms described in natural
language into the program code, e.g., a series of If-Then-
type scenario-response rules. Moreover, interaction cri-
teria (e.g., access authority, communication mode, etc.)
should also be enacted in this layer for the interactions
between contracts and users (or contracts and contracts)
according to the characteristics of the development
platforms and contractors’ intentions.

3) Operations Layer: The operations layer encapsulates all
the dynamic operations on the static contracts, including
mechanism design, formal verification, security analy-
sis, updates, and self-destruction. Maintenance layer is
the key to the correct, safe, and efficient operation of
smart contracts because malicious or vulnerable smart
contracts can bring huge economic losses to users. From
the perspective of smart contracts’ life-cycle from nego-
tiation to self-destruction, before the smart contracts
are deployed onto the blockchain, mechanism design
operations use information and incentive theory to help
contracts achieve their function efficiently. Formal ver-
ification [8] and security analysis operations are used
to verify the correctness and security of contract codes,
and ensure that the codes will be executed according to
the programmers’ actual semantics [12]. After the smart
contracts are deployed onto the blockchain, updates can
be implemented technically when the contract func-
tion is difficult to meet users’ demands or the contract
has repairable vulnerabilities, although all the historical
updates are recorded on the blockchain and cannot be
tampered. At the end of the smart contracts’ life cycle or
when a high-risk vulnerability occurs, self-destruction is
conducted to insure network security.

4) Intelligence Layer: The intelligence layer encapsu-
lates various intelligent algorithm, including perception,

reasoning, learning, decision-making, and socializing,
which add intelligence to the smart contracts built on
the first three layers. It must be pointed out that current
smart contracts do not have much intelligence. However,
we believe that the future smart contracts will not only
be self-enforcing according to the predefined If-Then
statements but also should have “What-If”-type deduc-
tion, computation, and intelligent decision-making in
unknown scenarios. As mentioned earlier, smart con-
tracts running on the blockchain network can be consid-
ered as software agents that act on behalf of their users.
With the development of artificial intelligence (AI) tech-
nology, agents will have a certain degree of intelligence,
such as perception, reasoning, and learning by virtue of
cognitive computing [13], reinforcement learning [14],
etc. Hence, those agents are not only autonomous as they
have capabilities of tasks selection, prioritization, and
goal-directed behaviors (sometimes referred to as belief-
desire-intention [15]) but also have sociability through
communication, cooperation, and negotiation with each
other. The learning and collaboration results will also
be fed back to the contracts layer and the operations
layer, thus optimizing the contract design and operation,
ultimately realizing the truly “smart” contract.

5) Manifestations Layer: The manifestations layer encap-
sulates various manifestation forms of smart contracts
for potential applications, including DApps, decentral-
ized autonomous organizations (DAOs), decentralized
autonomous corporations (DACs), and decentralized
autonomous societies (DASs). Smart contracts that
encapsulate the complex behaviors of network nodes are
equivalent to the application interfaces of blockchain,
which enable blockchain to embed different applica-
tion scenarios. For instance, by writing legal provi-
sions, business logics, and intention agreements into
smart contracts, a variety of DApps can be developed.
Furthermore, the multiagent systems built on the fourth
layers will gradually evolve into various DAOs, DACs,
and DASs. These high-level manifestation forms are
expected to improve traditional business and man-
agement, and lay the foundation for the future pro-
grammable society. Taking the DAO as an exam-
ple, DAOs are organizations that are powered and
run by smart contracts, their business and adminis-
trative rules are all recorded on blockchains. DAOs
can reduce transaction costs and introduce the possi-
bility of aligning interests for stakeholders in a more
decentralized manner. Therefore, DAOs are expected to
bring disruptive influence to the traditional management
paradigms which are typically in a top-down hierarchical
structure [16].

6) Applications Layer: The applications layer encapsu-
lates all the application domains that built upon the
manifestation layer. For instance, based on DAO, an
application called Plantoid (also named as the distributed
autonomous art) was developed in Ethereum, which
realized a truly aesthetic economy that binds artists,
designers, artworks, and audiences into a symbiotic

WANG et al.: BLOCKCHAIN-ENABLED SMART CONTRACTS: ARCHITECTURE, APPLICATIONS, AND FUTURE TRENDS 2271

relationship, thereby emancipating art from concentrated
and hierarchically organized capitalist markets [17].
Theoretically, smart contracts can be used in all indus-
tries, e.g., finance, IoT, healthcare, supply chain, etc. We
will introduce them in detail in Section IV.

It is worth noting that the proposed framework is in only
an ideal framework, especially for the intelligence layer.
However, just as pointed out by Glaser [11], it is a functional
limitation that any activity in the blockchain needs to be trig-
gered by a node controlled from outside of the network, and
smart contract should implement autonomous mechanisms or
complex microservice interactions which, in total, realize more
sophisticated service logic like an autonomous portfolio man-
agement service. Future smart contracts should have a certain
autonomy and intelligence.

The proposed framework is of a certain theoretical and prac-
tical value for researchers and practitioners. On the one hand,
the framework covers the key elements in the whole life-cycle
of smart contract. On the other hand, the framework indicates
the research direction and possible development trends.

III. CHALLENGES AND RECENT PROGRESSES

As an emerging technology in its infancy, smart contracts
currently face many problems and challenges. Based on the
proposed research framework which employs a six-layer archi-
tecture, this section will outline the challenges and recent
research progresses of smart contracts.

A. Contract Vulnerabilities

Contract vulnerabilities mainly appear in the contracts layer
in the research framework we proposed. The malicious miners
or users can exploit them to gain profit. Here are some typical
cases [18]–[20].

1) Transaction-Ordering Dependence (TOD): Each block
contains several transactions, and the order in which
transactions are executed depends on the miner. TOD
occurs when several dependent transactions invoke the
same contract that the miner can manipulate the order
in which the transactions are executed.

2) Timestamp Dependence: The miners set the timestamp
for the block they mined (generally according to the
miner’s local clock system). The miner can modify the
timestamp by a few seconds on the promise that other
miners accept the block they proposed. The vulnerability
lies in the fact that some smart contracts take times-
tamp as a trigger condition, e.g., transferring money,
thus adversary may manipulate the timestamp-dependent
contracts for their own interests.

3) Mishandled Exceptions: When a contract (caller) calls
another contract (callee), if the callee runs abnormally,
it terminates and returns false. This exception may or
may not be passed to the caller. In principle, the caller
must explicitly check the return value from the callee to
verify that the call was executed successfully. However,
If the caller does not properly check the return value, it
will bring potential threats. A typical case is the King
of the Ether Throne contract in Ethereum.

4) Re-Entrancy Vulnerability: When a contract calls
another one, the current execution waits for the call to
finish. As the fallback mechanism allows an attacker
to re-enter the caller function, attacker may use the
intermediate state of the caller to conduct repeated calls,
leading to loops of invocations which retrieve multiple
refunds and empty the balance [12]. The most notorious
re-entrancy vulnerability is The DAO attack [21].

5) Callstack Depth: Each time a contract invokes another,
the call stack associated with the transaction grows by
one frame. The call stack is bounded to 1024 frames
for Ethereum. When this limit is reached, a further
invocation throws an exception. An adversary starts by
generating an almost-full call stack, and then he/she
invokes the victim’s function, which will throw an
exception. If the exception is not properly handled by the
victim’s contract, the adversary could manage to succeed
in his/her attack [22].

To deal with those contract vulnerabilities, some secu-
rity analysis tools are developed. For example, as many
contract bugs stem from a semantic gap between the program-
mers about the underlying execution semantics and the actual
semantics of the smart contracts, Luu et al. [12] developed a
symbolic execution tool called Oyente to find potential secu-
rity bugs in Ethereum smart contracts. Among 19 366 smart
contracts in Ethereum, Oyente flagged 8833 of them as vulner-
able, including The DAO bug [12]. Securify [23] is a security
analyzer for Ethereum smart contracts. Its analysis consists of
two steps: first, it symbolically analyzes the contract’s depen-
dency graph to extract precise semantic information from the
code. Then, it checks compliance and violation patterns that
capture sufficient conditions for proving if a property holds
or not. Securify can analyze many vulnerabilities, such as
transaction-reordering, recursive calls, insecure coding pat-
terns, etc. Manticore9 is another symbolic execution tool for
analysis of binaries and smart contracts which can record an
instruction-level trace of execution for each generated input
and discover inputs that crash programs via memory safety
violations. Remix10 is a web-based IDE which serves as a
security tool by analyzing the Solidity code to reduce coding
mistakes and identify potential vulnerable coding patterns.

B. Limitations of the Blockchain

The limitations in blockchain itself are important factors
hindering the development of smart contract. These limita-
tions correspond to the infrastructures layer of the smart
contract framework we proposed. Some typical limitations are
as follows.

1) Irreversible Bugs: Due to the irreversible nature of the
blockchain, once the smart contracts are deployed, they
are finalized and cannot be changed. In other words,
if there exists a bug in a smart contract, there is no
direct way to fix it. Thus, if you find a defect in a smart
contract, you need to update it. And when you deploy
a new version of an existing contract, data stored in the

9Manticore. https://github.com/trailofbits/manticore.
10Remix. https://github.com/ethereum/remix.

2272 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 11, NOVEMBER 2019

previous contract is not automatically transferred—you
have to manually initialize the new contract with the past
data which makes it very cumbersome.

2) Performance Issues: Performance issues in blockchain
systems, such as limited scalability, throughput bottle-
neck, transactions latency [24], and storage constraints
also limit the performance of smart contracts. Taking
the throughput as an example, in the current blockchain
systems, smart contracts are executed serially by miners
and validators. Serial execution limits system through-
put and fails to exploit today’s concurrent multicore and
cluster architectures. Dickerson et al. [25] presented a
novel way to permit miners and validators to execute
smart contracts in parallel, based on techniques adapted
from software transactional memory.

3) Lack of Trusted Data Feeds (Oracles): As mentioned
before, the execution of smart contract requires the exter-
nal data about real-world states and events from outside
the blockchain, trusted data feeds (Oracles) serve as
the bridge between blockchain and the external world
(e.g., Web API). Lacking a substantive ecosystem of
trustworthy data feeds is often regarded as a critical
obstacle to the evolution of smart contracts [26], [27].
For this problem, Zhang et al. [27] built a town
crier (TC) solution that acts as a reliable connection
between HTTPS-enabled websites and blockchain to
provide authenticated data feeds for smart contracts.
Oraclize11 is an Oracle service for smart contracts
and blockchain applications, which guarantees the data
fetched from the original data-source is genuine and
untampered by accompanying the returned data together
with a document called authenticity proof. In addition,
some prediction market platforms, such as Augur12 and
Gnosis13 can also serve as Oracles, as they can pro-
vide external information for smart contracts, such as
the results of sports events or political elections.

4) Lack of Standards and Regulations: One of the pri-
mary blockchain security issues and risks is the lack
of standards and regulations. Juels et al. [28] proposed
the concept of criminal smart contracts (CSCs), and
listed some typical CSCs, e.g., leakage of confidential
information, theft of cryptographic keys, and various
real-world crimes (murder, arson, and terrorism). When
malicious behaviors occur in smart contracts, it is dif-
ficult to supervise these malicious acts due to lack of
effective regulation mechanism. In face of the potential
high security risks of blockchain and smart contracts,
some regulatory authorities, e.g., U.S. Securities and
Exchange Commission began to pay attention to the
regulatory and operational challenges arising from these
new technologies [29].

C. Privacy and Legal Issues

The privacy issues of smart contracts can be divided into
two categories: 1) contract data privacy and 2) trusted data

11Oraclize. http://www.oraclize.it/.
12Augur. https://www.augur.net/.
13Gnosis. https://gnosis.pm/.

feeds privacy, involving the infrastructures layer and contracts
layer of the research framework we proposed. Currently, not
only transactions but also contract-related information are pub-
licly available [30] (especially for the information on the
public blockchain), such as the bytecode, invoking param-
eters, etc. So it represents a real challenge to keep critical
functions/methods secret, apply cryptography, and avoid dis-
closing data that should not have been public. Kosba et al. [31]
proposed a decentralized smart contract system called Hawk
that allows developers to write privacy-preserving smart con-
tracts without the need of implementing any cryptography,
and its compiler automatically generates an efficient cryp-
tographic protocol where contractual parties interact with
the blockchain, using cryptographic primitives such as zero-
knowledge proofs. Watanabe et al. [32] proposed to encrypt
smart contracts before deploying them on the blockchain.
Only those participants who involved in a contract can access
its content by using the decryption keys [32]. For trusted
data feeds privacy, TC [27] supported private and custom
data requests, enabling encrypted requests and secure use of
access-controlled, off-chain data sources.

The legal issues of smart contract are mainly embodied
in the contracts layer. Some scholars argue that smart con-
tract is merely a type of computer code that can self-enforce,
self-verify, and self-constrain the performance of its instruc-
tions, which may represent all, part, or none of a valid legal
contracts under the existing laws. Hence, there may be a con-
flict between relational contract theories and smart contracts.
For example, data privacy laws in European stipulate that cit-
izens have a “right to be forgotten” which is incompatible
with the immutable nature of blockchain-enabled smart con-
tracts. Other legal issues include, but are not limited to, the
following.

1) What laws otherwise apply to the transactions taking
place within the smart contract application?

2) What hazards are posed by use of the smart contract
application alone (e.g., a) a loss of data; b) business
interruption; c) privacy breach; and/or d) a failure to
perform)?

3) What happens when the outcomes of a smart
contract diverge from the outcomes that the law
demands [33]–[35]?

In addition to the above challenges on infrastructures layer
and contracts layer, there are some other challenges. For exam-
ple, on operations layer, poor mechanism design of smart
contracts will increase contracts execution costs and reduce
contracts execution efficiency. Designers need to design a
set of incentive mechanisms to align the individual interests
with the overall interests of the organization/society, thus
to achieve incentive compatibility. On intelligence layer, the
malicious intelligent agents may profit from their malicious
behavior, etc.

IV. APPLICATION SCENARIOS OF SMART CONTRACTS

Currently, applications of smart contracts are springing up.
This section will take finance, management, IoT, and energy
as examples to introduce the application scenarios of smart
contracts.

WANG et al.: BLOCKCHAIN-ENABLED SMART CONTRACTS: ARCHITECTURE, APPLICATIONS, AND FUTURE TRENDS 2273

A. Finance

Blockchain and smart contracts enable increased visibility
and trust across the participants while bring huge savings in
infrastructures, transactions, and administrative costs [36]. The
following are several typical applications of smart contracts in
finance.

1) Securities: Security industry involves complex proce-
dures that are time consuming, cost inefficient, cum-
bersome, and prone to risks. Smart contracts can
circumvent intermediaries in the chain of securities
custody and facilitate the automatic payment of div-
idends, stock splits, and liability management, while
reducing operational risks. In addition, smart con-
tracts can facilitate the clearing and settlement of
securities. At present, major markets in the U.S.,
Canada, and Japan still have a 3-day settlement cycle
(T+3) [37] that involves many institutions, such as
securities depositories and collateral management agen-
cies. The centralized clearing entails labor-intensive
activities and complex internal and external reconcili-
ations. Blockchain enables bilateral peer-to-peer execu-
tion of clearing business logic using smart contracts. The
Australian Securities Exchange is working on a DLT-
based post-trade platform to replace its equity settlement
system [38].

2) Insurances: The insurance industry spends tens of mil-
lions of dollars each year on processing claims and loses
millions of dollars to fraudulent claims. Smart contracts
can be exploited to automate claims processing, verifi-
cation, and payment, thus to increase the speed of claim
processing as well as to eliminate fraud and prevent
potential pitfalls [39]. For example, The French airline,
AXA,14 is taking flight insurance to the smart con-
tracts. If passengers’ flight is more than two hours late,
they will get automatically notified with the compensa-
tion options. Smart contracts may also be used in auto
insurance, because contracts can record the insurance
clauses, driving records, and accident reports, allowing
IoT-equipped vehicles to execute claims shortly after an
accident.

3) Trade Finance: Trade finance is currently full of inef-
ficiencies and the industry is extremely vulnerable
to fraud. Besides, the paper-based processes of trade
finance desperately need to be upgraded or replaced with
digitalized operations. Smart contracts allow businesses
to automatically trigger commercial actions based on
predefined criteria that will boost efficiency by stream-
lining processes, and reduce both fraud and compliance
costs. In July 2017, a trade transaction was completed
between Australia and Japan. This trade transaction saw
all the trade-related processes, from issuing a letter of
credit to delivering trade documents completed entirely
via the Hyperledger Fabric platform, which reduced the
time required to transmit documents, as well as the labor
and other costs [40].

14AXA. https://fizzy.axa/en-gb/.

B. Management

Blockchain-enabled smart contracts can provide appropriate
and transparent accountability in terms of roles, responsibili-
ties, and decision processes in management. Some use cases
follow.

1) Digital Properties and Rights Management: Storing
cryptographic certification of properties or rights on
blockchain can facilitate the access and validation.
de la Rosa et al. [41] proposed to use smart contracts
to certify the proof of existence and authorship of intel-
lectual properties. Propy15 allows owners and brokers
to register their real estate properties, where buyers can
search and negotiate the sale. Both parties participate
in the smart contracts together and specific steps are
taken throughout the process to ensure fair and legal
play. Smart contracts can also be applied in digital rights
management. For example, a DApp called Ujo Music16

enforce the royalty payments for a musician once his/her
work is used for commercial purposes.

2) Organizational Management: Now, most organizations
are managed by and centered on a board of direc-
tors who hold majority of decision-making power. It
is believed that the future organizational management
will be flattened and decentralized. Smart contracts can
remove unnecessary intermediaries that impose artificial
restrictions and unnecessarily complex regulations. For
example, Aragon17 is a project powered by Ethereum
that aims to disintermediate the creation and mainte-
nance of organizational structures, and empowers people
across the world to easily and securely manage their
organizations. In Aragon, tokens represent your stake in
the organization, you can utilize crowdfunding to raise
funds globally and use voting for more effective results,
you can also add a new employee to your organization.

3) E-Government: Smart contracts can simplify bureau-
cratic processes and improve the efficiency and authority
of E-government. For example, Chancheng District in
Foshan, China, established the first E-government ser-
vice platform using blockchain and smart contracts
technology for the sake of improving the quality of
government services, developing the individual credit
system, strengthening the government’s credibility, and
promoting the integration of resources [42]. Other appli-
cation areas of smart contracts in E-Government include
novel payment systems for work and pensions, strength-
ening international aid systems, E-Voting [43], [44], etc.

C. Internet of Things

IoT is an ecosystem of connected physical devices, vehi-
cles, home appliances, and other items that are accessible
through the Internet. IoT is believed to be widely used in smart
grid, smart home, intelligent transportation system, intelligent
manufacturing, and other fields. The traditional centralized
Internet system is difficult to meet IoT’s development needs,

15Propy. https://propy.com/.
16Ujo Music. https://ujomusic.com/.
17Aragon. https://aragon.org/.

2274 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 11, NOVEMBER 2019

such as the security of sensitive information and trusted
interaction between multidevices. Therefore, the combination
of IoT and blockchain becomes an inevitable tendency, and
smart contracts will help to automate the complex workflow,
promote resource sharing, save costs, and ensure safety and
efficiency [45]. Dorri et al. [46], [47] proposed a smart home
model based on blockchain and smart contracts, they dis-
cussed various interaction processes in the model and proved
that the proposed model can significantly reduce the daily
management costs of IoT devices through simulation exper-
iments. Zhang et al. [48] proposed a smart contract-based
framework, which consists of multiple access control con-
tracts, one judge contract, and one register contract, to achieve
distributed and trustworthy access control for IoT systems.
Iotex18 is a privacy-focused blockchain-driven decentralized
IoT network that supports multiple IoT ecosystems, includ-
ing shared economy, smart home, identity management, and
supply chain.

D. Energy

With the rise of energy revolution, the future develop-
ment trend of the energy industry is distributed and clean
energy. Blockchain technology can be used to build distributed
energy system and deploy energy supply and trading smart
contracts, so as to build the decentralized energy trading mar-
kets, improve energy utilization efficiency, and reduce grid
operating costs. At present, the main application scenarios of
energy blockchain projects include distributed energy, electric
vehicle, energy trading, carbon tracking, and registries [49].
Exergy19 is a consortium blockchain platform that creates
localized energy marketplaces for transacting energy across
existing grid infrastructures. On the Exergy platform, pro-
sumers who generate the energy through their own renewable
resource can transact energy autonomously with consumers in
their local marketplace. The Sun Exchange20 is a blockchain-
enabled marketplace that enables its members to purchase
and then lease solar cells to schools, businesses, and com-
munities in the sunniest locations on Earth (mainly Africa)
and its members’ earnings are calculated on the amount of
electricity their solar cells have produced. The Sun Exchange
will arrange the monthly lease rental collection and distribu-
tion. Knirsch et al. [50] presented a reliable, automated, and
privacy-preserving selection of charging stations based on pric-
ing and the distance to the electric vehicles. The proposed
protocol was built on a blockchain where electric vehicles
signal their demand and charging stations send bids [50].

There are some other application scenarios of smart con-
tracts, e.g., healthcare [51], prediction markets [52], intelligent
transportation system [53], etc.

V. FUTURE DEVELOPMENT TRENDS

In this section, we will introduce the future development
trends of smart contracts from three aspects, namely, formal

18Iotex. https://iotex.io/.
19Exergy. https://exergy.energy/.
20The Sun Exchange. https://thesunexchange.com/.

verification, Layer 2, and smart contracts-driven parallel orga-
nizational/societal management.

A. Formal Verification

Formal verification means applying a proof that the pro-
gram behaves according to a specification. In general, this is
done with a concrete specification language used to describe
how input and output of functions are related. Formal ver-
ification of smart contracts involves proving that a contract
program satisfies a formal specification of its behavior [54].
It corresponds to the operations layer in the research frame-
work we proposed. Hirai defined a formal model for the
EVM using the Lem language. The proposed model proved
safety properties of a smart contract using the interactive the-
orem provers [55]. Amani et al. [54] extended an existing
EVM formalization in Isabelle/HOL by a sound program logic
at the level of bytecode. Hildenbrandt et al. [56] presented
KEVM, an executable formal specification of the EVM byte-
code stack-based language built with the K Framework [57],
which designed to serve as a solid foundation for further for-
mal analyses. Bhargavan et al. [8] outlined a framework to
analyze and formally verify the functional correctness and run-
time safety of Ethereum smart contract by translating both
Solidity program and EVM bytecode into F*, a functional
programming language aimed at program verification. Most
of these formal verification tools are still in the experimental
stage and have not been widely used. In the future, formal
verification will become an important research direction as
it provides the highest level of confidence about the correct
behavior of smart contracts.

B. Layer 2

As mentioned earlier, smart contract faces many challenges,
e.g., poor performance, inability to handle complex logic exe-
cution and high-throughput data, lack of privacy protection,
and inability to implement cross-chain. A viable solution in
the future is called Layer 2. It corresponds to the infrastruc-
tures layer in our research framework. Layer 2 creates an
off-chain contract execution environment, where blockchain
acts as the “consensus layer” which is responsible for the tran-
sition of contract-related states and token payment, thereby
separating the execution of smart contracts from the consen-
sus process of the blockchain and thus realizing high level of
performance and privacy. One implementation of Layer 2 is
Off-Chain State Channels, which provide state maintenance
services between different entities by establishing a bidirec-
tional channel between different users or between users and
services. State Channels allow performing transactions and
other state updates off-chain, while still having full confi-
dence that they can revert back to the main-chain if necessary.
In addition, Plasma [58] can conduct off-chain transactions
by allowing for the creation of “child” Ethereum blockchains
attached to the main-chain while relying on the underlying
blockchain to ground its security. Truebit21 makes it possible
to perform computationally expensive computations off-chain
as a smart contract.

21Truebit. https://truebit.io/.

WANG et al.: BLOCKCHAIN-ENABLED SMART CONTRACTS: ARCHITECTURE, APPLICATIONS, AND FUTURE TRENDS 2275

C. Smart Contracts-Driven Parallel Organizational/Societal
Management

The rapid development of the Internet and its deep cou-
pling with the physical world have fundamentally changed
the management pattern of modern organizations and soci-
eties. The future development trend of organizations/societies
is bound to a transformation from cyber-physical systems to
cyber-physical-social systems (CPSSs) in which social and
individual factors must be taken into account [59]. At present,
the concept of parallel societies based on CPSS has sprouted,
and their substantive characteristics are uncertainty, diversity,
and complexity due to the social complexity [60].

Blockchain and smart contracts are the infrastructures for
implementing the CPSS-based parallel organizations/societies
because they provide effective decentralized data structures
and interaction mechanism for distributed social systems and
distributed AI. As mentioned earlier, nodes running smart
contracts can be regarded as software agents who have an
understanding of the external environment and act upon
it. Since different nodes represent the interests of different
individuals in an organization/society, they deploy and exe-
cute contracts through autonomous negotiation, thus forming
various DAOs/DACs/DASs. Beyond the traditional organiza-
tions/societies that organized in a hierarchical structure and
top-down commands, DAOs/DACs/DASs can help to solve the
main problem in organizational management domain, namely,
principal-agent dilemma [61].

The artificial societies + computational experiments + par-
allel execution (ACP approach, where artificial systems are
used for modeling and representation, computational exper-
iments are utilized for analysis and evaluation, and parallel
executions are conducted for control and management of
complex systems) is by far the only systematic research
framework in the field of parallel organizational/societal man-
agement [62]. Wang et al. [63] proposed the conceptual
framework, fundamental theory, and research methodology
of parallel blockchain. We believe that the ACP approach
can be naturally combined with blockchain to realize smart
contracts-driven parallel organizational/societal management.
First, the P2P network, distributed consensus, and incen-
tive mechanism of the blockchain are the nature ways of
modeling a distributed system, each node will act as an
autonomous agent and eventually constitute software-defined
organization/societal systems (corresponding to artificial soci-
eties). Second, the programmable feature of smart contract
enables a variety of WHAT-IF-type virtual experimental
design, experimental scenarios deduction, and experimental
results evaluation (corresponding to computational experi-
ments), so that the agents can make the optimal decision in a
specific scenario. Finally, the combination of blockchain and
IoT can generate a wide variety of smart assets, making it
possible to connect physical world and virtual cyberspace.
Through the virtual-real interactions and parallel evolution
between the physical and artificial organizations/societies, the
optimal organizational/societal management scheme can be
obtained (corresponding to parallel execution). This corre-
sponds to the manifestation layer in the research framework we
proposed.

VI. CONCLUSION

With the increasing popularization and deepened applica-
tions of blockchain technology, emerging smart contracts have
become a hot research topic in both academic and industrial
communities. The decentralization, enforceability, and verifia-
bility characteristics of smart contracts enable contract terms to
be executed between untrusted parties without the involvement
of a trusted authority or a central server. Thus, smart contracts
are expected to revolutionize many traditional industries, such
as financial, management, IoT, etc. In this paper, we present
a comprehensive overview of smart contracts, including the
operational mechanism, mainstream platforms, and application
scenarios. Specially, we propose a basic research framework of
smart contracts based on a novel six-layer architecture. Then
we discuss the open challenges standing ahead of smart con-
tracts and the recent research progresses. Finally, the future
development trends are discussed. The focus of this paper is
to make a systematic review of smart contracts and identify
some research gaps that need to be addressed in future studies.

REFERENCES

[1] N. Szabo. (1996). Smart Contracts: Building Blocks for Digital
Markets. [Online]. Available: http://www.fon.hum.uva.nl/rob/Courses/
Information-InSpeech/CDROM/Literature/LOTwinterschool2006/szabo.
best.vwh.net/smart_contracts_2.html

[2] N. Szabo. (1997). The Idea of Smart Contracts. [Online]. Available:
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html

[3] J. Stark. (2016). Making Sense of Blockchain Smart Contracts. [Online].
Available: https://www.coindesk.com/making-sense-smart-contracts/

[4] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[5] Y. Yuan and F.-Y. Wang, “Blockchain and cryptocurrencies: Model,
techniques, and applications,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 48, no. 9, pp. 1421–1428, Sep. 2018.

[6] X. Xu et al., “The blockchain as a software connector,” in Proc. 13th
Working IEEE/IFIP Conf. Softw. Archit. (WICSA), 2016, pp. 182–191.

[7] Ethereum Yellow Paper. (2018). [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[8] K. Bhargavan et al., “Formal verification of smart contracts: Short
paper,” in Proc. ACM Workshop Program. Lang. Anal. Security (PLAS),
Vienna, Austria, Oct. 2016, pp. 91–96,

[9] M. Risius and K. Spohrer, “A blockchain research framework: What we
(don’t) know, where we go from here, and how we will get there,” Bus.
Inf. Syst. Eng., vol. 59, no. 6, pp. 385–409, 2017.

[10] X. Xu et al., “A taxonomy of blockchain-based systems for architec-
ture design,” in Proc. IEEE Int. Conf. Softw. Archit. (ICSA), 2017,
pp. 243–252.

[11] F. Glaser, “Pervasive decentralisation of digital infrastructures: A frame-
work for blockchain enabled system and use case analysis,” in Proc. 50th
Hawaii Int. Conf. Syst. Sci., 2017, pp. 1543–1552.

[12] L. Luu, D. H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security (CCS), Vienna, Austria, Oct. 2016, pp. 254–269.

[13] D. S. Modha et al., “Cognitive computing,” Commun. ACM, vol. 54,
no. 8, pp. 62–71, 2011.

[14] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, May 1996.

[15] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge, “The
belief-desire-intention model of agency,” in Proc. Int. Workshop Agent
Theories Archit. Lang., 1998, pp. 1–10.

[16] What is a DAO? Accessed: Oct. 17, 2018. [Online]. Available:
https://blockchainhub.net/dao-decentralized-autonomous-organization/

[17] L. Lotti, “Contemporary art, capitalization and the blockchain: On the
autonomy and automation of art’s value,” Finance Soc., vol. 2, no. 2,
pp. 96–110, 2016.

[18] A. Dika, “Ethereum smart contracts: Security vulnerabilities and security
tools,” M.S. thesis, Dept. Comput. Sci., Norwegian Univ. Sci. Technol.,
Trondheim, Norway, 2017.

2276 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 11, NOVEMBER 2019

[19] M. Alharby and A. V. Moorsel, “Blockchain-based smart contracts: A
systematic mapping study,” in Proc. Int. Conf. Artif. Intell. Soft Comput.,
2017, pp. 125–140.

[20] K. Delmolino et al., “Step by step towards creating a safe smart contract:
Lessons and insights from a cryptocurrency lab,” in Proc. Int. Conf.
Financ. Cryptography Data Security, 2016, pp. 79–94.

[21] D. Siegel. Understanding the DAO Attack. Accessed: Sep. 19, 2018.
[Online]. Available: https://www.coindesk.com/understanding-dao-hack-
journalists/

[22] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum
smart contracts,” in Principles of Security and Trust. Heidelberg,
Germany: Springer, 2017, pp. 164–186.

[23] P. Tsankov et al., “Securify: Practical security analysis of smart
contracts,” arXiv preprint arXiv:1806.01143v2, 2018.

[24] R. Qin, Y. Yuan, and F.-Y. Wang, “Research on the selection strategies
of blockchain mining pools,” IEEE Trans. Comput. Soc. Syst., vol. 5,
no. 3, pp. 748–757, Sep. 2018.

[25] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding con-
currency to smart contracts,” in Proc. ACM Symp. Principles Distrib.
Comput., 2017, pp. 303–312.

[26] G. Greenspan. Why Many Smart Contract Use Cases Are
Simply Impossible. Accessed: Sep. 30, 2018. [Online]. Available:
https://www.coindesk.com/three-smart-contract-misconceptions/

[27] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Security (CCS), Vienna, Austria, Oct. 2016,
pp. 270–282.

[28] A. Juels, A. Kosba, and E. Shi, “The ring of Gyges: Investigating
the future of criminal smart contracts,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Security (CCS), Vienna, Austria, Oct. 2016,
pp. 283–295.

[29] U.S. Securities and Exchange Commission. Investor Bulletin: Initial
Coin Offerings. Accessed: Nov. 3, 2018. [Online]. Available:
https://www.sec.gov/oiea/investor-alerts-and-bulletins/ib_coinofferings

[30] T.-H. Chang and D. Svetinovic, “Improving bitcoin ownership identi-
fication using transaction patterns analysis,” IEEE Trans. Syst., Man,
Cybern., Syst., to be published. doi: 10.1109/TSMC.2018.2867497.

[31] A. Kosba, A. Miller, E. Shi, Z. K. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. IEEE Symp. Security Privacy (SP), San Jose, CA,
USA, May 2016, pp. 839–858.

[32] H. Watanabe et al., “Blockchain contract: A complete consensus using
blockchain,” in Proc. IEEE 4th Glob. Conf. Consum. Electron. (GCCE),
2015, pp. 577–578.

[33] J. Caytas, “Blockchain in the U.S. regulatory setting: Evidentiary
use in Vermont, Delaware, and elsewhere,” in Columbia
Science and Technology Law Review, 2017. [Online]. Available:
https://ssrn.com/abstract=2988363

[34] J. D. Hansen and C. L. Reyes, “Legal aspects of smart contract applica-
tions,” Perkins Coie’s Blockchain Ind. Group, Seattle, WA, USA, White
Paper, May 2017.

[35] B. Marino and A. Juels, “Setting standards for altering and undoing
smart contracts,” in Proc. Int. Symp. Rules Rule Markup Lang. Semantic
Web, 2016, pp. 151–166.

[36] B. Ojetunde, N. Shibata, and J. Gao, “Secure payment system utilizing
MANET for disaster areas,” IEEE Trans. Syst., Man, Cybern., Syst., to
be published. doi: 10.1109/TSMC.2017.2752203.

[37] R. R. Bliss and R. S. Steigerwald, “Derivatives clearing and settlement:
A comparison of central counterparties and alternative structures,” Econ.
Perspectives, vol. 30, no. 4, pp. 22–29, 2006.

[38] Australian Securities Exchange. CHESS Replacement. Accessed:
Oct. 15, 2018. [Online]. Available: https://www.asx.com.au/services/
chess-replacement.htm

[39] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and V. Santamaria,
“Blockchain and smart contracts for insurance: Is the technology mature
enough?” Future Internet, vol. 10, no. 2, p. 20, 2018.

[40] A. Peyton. (2017). Mizuho Trials Australia–Japan Trade Transaction
on Blockchain. [Online]. Available: https://www.bankingtech.com/
2017/07/mizuho-trials-australia-japan-trade-transaction-on-blockchain/

[41] J. L. de la Rosa et al., “On intellectual property in online open innovation
for SME by means of blockchain and smart contracts,” in Proc. 3rd
Annu. World Open Innov. Conf. (WOIC), Barcelona, Spain, Dec. 2016,
pp. 1–16.

[42] H. Hou, “The application of blockchain technology in E-government
in China,” in Proc. 26th Int. Conf. Comput. Commun. Netw. (ICCCN),
2017, pp. 1–4.

[43] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for board-
room voting with maximum voter privacy,” in Proc. Int. Conf. Financ.
Cryptography Data Security, 2017, pp. 357–375.

[44] A. B. Ayed, “A conceptual secure blockchain-based electronic voting
system,” Int. J. Netw. Security Appl., vol. 9, no. 3, pp. 1–9, 2017.

[45] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[46] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for
IoT security and privacy: The case study of a smart home,” in Proc. IEEE
Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops),
2017, pp. 618–623.

[47] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an optimized
blockchain for IoT,” in Proc. ACM 2nd Int. Conf. Internet Things Design
Implement., 2017, pp. 173–178.

[48] Y. Zhang et al., “Smart contract-based access control for the Internet of
Things,” arXiv preprint arXiv:1802.04410, 2018.

[49] The Energy Web Foundation. Promising Blockchain Applications
for Energy: Separating the Signal From the Noise. Accessed:
Sep. 2, 2018. [Online]. Available: http://www.coinsay.com/wp-content/
uploads/2018/07/Energy-Futures-Initiative-Promising-Blockchain-Appli
cations-for-Energy.pdf

[50] F. Knirsch, A. Unterweger, and D. Engel, “Privacy-preserving
blockchain-based electric vehicle charging with dynamic tariff
decisions,” Comput. Sci. Res. Develop., vol. 33, nos. 1–2, pp. 71–79,
2018.

[51] Q. Xia et al., “MeDShare: Trust-less medical data sharing among
cloud service providers via blockchain,” IEEE Access, vol. 5,
pp. 14757–14767, 2017. doi: 10.1109/ACCESS.2017.2730843.

[52] S. Wang et al., “A preliminary research of prediction markets based
on blockchain powered smart contracts,” in Proc. IEEE Int. Conf.
Blockchain (Blockchain), Jul./Aug. 2018, pp. 1287–1293.

[53] Y. Yuan and F.-Y. Wang, “Towards blockchain-based intelligent trans-
portation systems,” in Proc. IEEE 19th Int. Conf. Intell. Trans. Syst.
(ITSC), Rio de Janeiro, Brazil, 2016, pp. 2663–2668.

[54] S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying
Ethereum smart contract bytecode in Isabelle/HOL,” in Proc. 7th ACM
SIGPLAN Int. Conf. Certified Progr. Proofs (CPP), Los Angeles, CA,
USA, Jan. 2018, pp. 66–77.

[55] Y. Hirai, “Defining the Ethereum virtual machine for interactive theorem
provers,” in Proc. Int. Conf. Financ. Cryptography Data Security, 2017,
pp. 520–535.

[56] E. Hildenbrandt et al., “KEVM: A complete formal semantics of the
Ethereum virtual machine,” in Proc. IEEE 31st Comput. Security Found.
Symp. (CSF), 2018, pp. 204–217.

[57] G. Roşu and T. F. Şerbănuţă, “An overview of the K semantic frame-
work,” J. Logic Algebr. Program., vol. 79, no. 6, pp. 397–434, 2010.

[58] J. Poon and V. Buterin. (2017). Plasma: Scalable Autonomous Smart
Contracts. [Online]. Available: https://plasma.io/plasma.pdf

[59] J. J. Zhang et al., “Cyber-physical-social systems: The state of the
art and perspectives,” IEEE Trans. Comput. Soc. Syst., vol. 5, no. 3,
pp. 829–840, Sep. 2018.

[60] F. Y. Wang, “Software-defined systems and knowledge automation:
A parallel paradigm shift from Newton to Merton,” Acta Automatica
Sinica, vol. 41, no. 1, pp. 1–8, 2015.

[61] R. W. Rauchhaus, “Principal-agent problems in humanitarian interven-
tion: Moral hazards, adverse selection, and the commitment dilemma,”
Int. Stud. Quart., vol. 53, no. 4, pp. 871–884, 2009.

[62] D. Wen, Y. Yuan, and X.-R. Li, “Artificial societies, computational exper-
iments, and parallel systems: An investigation on a computational theory
for complex socioeconomic systems,” IEEE Trans. Services Comput.,
vol. 6, no. 2, pp. 177–185, Apr./Jun. 2013.

[63] F.-Y. Wang, Y. Yuan, C. Rong, and J. J. Zhang, “Parallel blockchain:
An architecture for CPSS-based smart societies,” IEEE Trans. Comput.
Soc. Syst., vol. 5, no. 2, pp. 303–310, Jun. 2018.

Shuai Wang received the master’s degree in con-
trol engineering from the University of Chinese
Academy of Sciences, Beijing, China, in 2015.
He is currently pursuing the Ph.D. degree in
social computing with the State Key Laboratory
for Management and Control of Complex Systems,
Institute of Automation, Chinese Academy of
Sciences, Beijing.

His current research interests include social com-
puting, parallel management, blockchain, and smart
contracts.

http://dx.doi.org/10.1109/TSMC.2018.2867497
http://dx.doi.org/10.1109/TSMC.2017.2752203
http://dx.doi.org/10.1109/ACCESS.2017.2730843

WANG et al.: BLOCKCHAIN-ENABLED SMART CONTRACTS: ARCHITECTURE, APPLICATIONS, AND FUTURE TRENDS 2277

Liwei Ouyang received the bachelor’s degree in
automation from Xi’an Jiaotong University, Xi’an,
China, in 2018. She is currently pursuing the mas-
ter’s degree in social computing with the State Key
Laboratory for Management and Control of Complex
Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing, China.

Her current research interests include social com-
puting and blockchain.

Yong Yuan (M’15–SM’17) received the B.S., M.S.,
and Ph.D. degrees in computer software and the-
ory from the Shandong University of Science and
Technology, Shandong, China, in 2001, 2004, and
2008, respectively.

He is an Associate Professor with the State Key
Laboratory for Management and Control of Complex
Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing, China. He is the Vice President
of the Qingdao Academy of Intelligent Industries,
Qingdao, China. He has authored over 90 papers

published in academic journals and conferences. His current research interests
include blockchain, cryptocurrency, and smart contract.

Dr. Yuan is currently an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTATIONAL SOCIAL SYSTEMS and ACTA Automatica SINICA. He is
the Chair of IEEE Council on RFID Technical Committee on Blockchain, the
Co-Chair of IEEE SMC Technical Committee on Blockchain, and also the
Director of the Chinese Association of Automation Technical Committee of
Blockchain. He is the Secretary-General of IEEE SMC Technical Committee
on Social Computing and Social Intelligence, the Vice Chair of IFAC
Technical Committee on Economic, Business, and Financial Systems (TC
9.1), and the Chair of ACM Beijing Chapter on Social and Economic
Computing. He is also the Secretary-General of the Chinese Association of
Artificial Intelligence Technical Committee on Social Computing and Social
Intelligence, and the Vice Director and the Secretary-General of the Chinese
Academy of Management Technical Committee on Parallel Management.

Xiaochun Ni received the master’s degree in
management science and engineering from Dalian
Maritime University, Dalian, China, in 2008.

He is currently an Engineer with the State
Key Laboratory for Management and Control of
Complex Systems, Institute of Automation, Chinese
Academy of Sciences, Beijing, China. His current
research interests include business intelligence and
blockchain.

Xuan Han received the master’s degree in soft-
ware engineering from the University of Chinese
Academy of Sciences, Beijing, China, in 2018.

She is currently an Assistant Engineer with the
State Key Laboratory for Management and Control
of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing. Her current
research interests include theory of cryptography and
blockchain technology.

Fei-Yue Wang (S’87–M’89–SM’94–F’03) received
the Ph.D. degree in computer and systems engineer-
ing from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 1990.

He joined the University of Arizona, Tucson, AZ,
USA, in 1990, and became a Professor and the
Director of the Robotics and Automation Laboratory
and the Program in Advanced Research for Complex
Systems. In 1999, he founded the Intelligent
Control and Systems Engineering Center, Institute of
Automation, Chinese Academy of Sciences (CAS),

Beijing, China, under the support of the Outstanding Overseas Chinese Talents
Program from the State Planning Council and “100 Talent Program” from
CAS. In 2002, he joined the Laboratory of Complex Systems and Intelligence
Science, CAS, as the Director, where he was the Vice President for Research,
Education, and Academic Exchanges with the Institute of Automation from
2006 to 2010. In 2011, he was named as the State Specially Appointed Expert
and the Director of the State Key Laboratory for Management and Control
of Complex Systems, Beijing. His current research interests include methods
and applications for parallel systems, social computing, parallel intelligence,
and knowledge automation.

Dr. Wang received the National Prize in Natural Sciences of China and
was awarded the Outstanding Scientist by ACM for his research contribu-
tions in intelligent control and social computing in 2007, the IEEE Intelligent
Transportation Systems (ITS) Outstanding Application and Research Awards
in 2009, 2011, and 2015, and the IEEE SMC Norbert Wiener Award in 2014.
He has been the General or Program Chair of over 30 IEEE, INFORMS, ACM,
and ASME conferences. He was the President of the IEEE ITS Society from
2005 to 2007, the Chinese Association for Science and Technology, USA,
in 2005, and the American Zhu Kezhen Education Foundation from 2007
to 2008. He was the Vice President of the ACM China Council from 2010
to 2011, and the Chair of IFAC TC on Economic and Social Systems from
2008 to 2011. He is currently the President-Elect of IEEE Council on RFID.
Since 2008, he has been the Vice President and the Secretary General of the
Chinese Association of Automation. He was the Founding Editor-in-Chief of
the International Journal of Intelligent Control and Systems from 1995 to 2000
and the IEEE Intelligent Transportation Systems Magazine from 2006 to 2007.
He was the Editor-in-Chief of the IEEE INTELLIGENT SYSTEMS from 2009
to 2012 and IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION

SYSTEMS from 2009 to 2016. He is currently the Editor-in-Chief of the IEEE
TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, and the Founding
Editor-in-Chief of the IEEE/CAA JOURNAL OF AUTOMATICA SINICA and
Chinese Journal of Command and Control. He was elected as a fellow of
INCOSE, IFAC, ASME, and AAAS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

