
Computers, Environment and Urban Systems 86 (2021) 101584

0198-9715/© 2020 Elsevier Ltd. All rights reserved.

3D city models for urban farming site identification in buildings 

Ankit Palliwal a, Shuang Song b, Hugh Tiang Wah Tan b, Filip Biljecki c,d,* 

a Department of Geography, National University of Singapore, Singapore 
b Department of Biological Sciences, National University of Singapore, Singapore 
c Department of Architecture, National University of Singapore, Singapore 
d Department of Real Estate, National University of Singapore, Singapore   

A R T I C L E  I N F O   

Keywords: 
3D GIS 
Food security 
OpenStreetMap 
Solar exposure 
Tropical climate 
VI-Suite 

A B S T R A C T   

Studies have suggested that there is farming potential in urban residential buildings. However, these studies are 
limited in scope, require field visits and time-consuming measurements. Furthermore, they have not suggested 
ways to identify suitable sites on a larger scale let alone means of surveying numerous micro-locations across the 
same building. Using a case study area focused on high-rise buildings in Singapore, this paper examines a novel 
application of three-dimensional (3D) city models to identify suitable farming micro-locations (level and 
orientation) in residential buildings. We specifically investigate whether the vertical spaces of these buildings 
comprising outdoor corridors, façades and windows receive sufficient photosynthetically active radiation (PAR) 
for growing food crops and do so at a high resolution. We also analyze the spatio-temporal characteristics of PAR, 
and the impact of shadows and different weather conditions on PAR in the building. Environmental simulations 
on the 3D model of the study area indicated that the cumulative daily PAR or Daily Light Integral (DLI) at a 
location in the building was dependent on its orientation and shape, sun’s diurnal and annual motion, weather 
conditions, and shadowing effects of the building’s own façades and surrounding buildings. The DLI in the study 
area generally increased with building’s levels and, depending on the particular micro-location, was found 
suitable for growing moderately light-demanding crops such as lettuce and sweet pepper. These variations in DLI 
at different locations of the same building affirmed the need for such simulations. The simulations were validated 
with field measurements of PAR, and correlation coefficients between them exceeded 0.5 in most cases thus, 
making a case that 3D city models offer a promising practical solution to identifying suitable farming locations in 
residential buildings, and have the potential for urban-scale applications.   

1. Introduction 

Over the years, farming in and around urban buildings, particularly 
residential buildings, has gained popularity in high-density and high- 
rise environments (Khan, Aziz, & Ahmed, 2018; Kim, Lee, Lee, & Lee, 
2018; Kosorić, Huang, Tablada, Lau, & Tan, 2019; Lim & Kishnani, 
2010; Song, Tan, & Tan, 2018). This is primarily because with limited 
land available for agriculture, these buildings offer under-utilized hor
izontal and vertical spaces that may have farming potential (Fig. 1). In 
addition, improvement of emotional, mental and physical well-being of 
the occupants (Tan & Ismail, 2015), mitigation of the urban heat island 
effect (Diehl et al., 2020), creation of job opportunities (Tablada & Zhao, 
2016), and reduction in carbon emissions associated with transportation 
of food (Lim & Kishnani, 2010) are counted among the other benefits of 
farming in these buildings. In Singapore, urban farming carries special 

significance as it has been adopted as one of the ‘Grow Local’ strategies 
to achieve the ‘30 by 30’ vision of the Singapore Food Agency (SFA) 
(Zulkifli, 2019). This vision aims to locally produce 30% of Singapore’s 
nutritional needs by 2030. 

Situated at 1◦ North of equator, Singapore is an arable land-scarce 
and densely populated island city-state which accommodates a popu
lation of about 5.7 million (Singapore Department of Statistics, 2019a) 
over its land area of 722.5km2 (Singapore Department of Statistics, 
2019b). Having only 1% of land set aside for agriculture (Diehl et al., 
2020), Singapore meets 90% of its food requirements through imports 
(Kosorić, Huang, Tablada, Lau, & Tan, 2019) leaving it vulnerable to 
external food price fluctuations and disruptions in the food supply chain. 
To reduce this heavy reliance on food imports and inline with SFA’s 
vision, Singapore’s numerous high-rise residential buildings, which 
accommodate almost its entire population, emerge as promising sites for 
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urban farming. These buildings not only offer under-utilized spaces but 
also provide an opportunity to its occupants, who are considered a key 
stakeholder to drive urban agriculture in Singapore, the ease of engaging 
in farming while at home (Kosorić, Huang, Tablada, Lau, & Tan, 2019). 
The vast majority of these buildings are public housing buildings, whose 
number surpassed 10 thousands and accommodate more than 80% of 
the nation (Housing & Development Board, 2020; Kosorić, Huang, 
Tablada, Lau, & Tan, 2019). They have standardised designs and due to 
their public nature offer prospects for government-supported initiatives. 

Besides the optimal crop growth conditions such as the level of 

carbon dioxide, nutrients, humidity, temperature, water, among others – 
which are fairly constant at the building scale – successful identification 
of soil-based farming micro-locations (particular site at a specific level) 
in a building requires an assessment of its exposure to sunlight. Past 
studies have measured sunlight availability either in terms of its dura
tion or its level. The former approach mainly focuses on the minimum 
duration of direct sunlight required by the crops for their growth. Based 
on the direct sunlight duration, suitable crops are identified for growing 
at particular sites (Kim et al., 2018; Santos, Tenedório, & Gonçalves, 
2016; Wong & Lau, 2013). While this approach may be useful for 

Fig. 1. Open spaces in urban and high-rise residential buildings that may have farming potential. In this paper, we mainly focused on outdoor vertical spaces (Fig. 1a, 
b, and f) since they are the sites that are most suitable for use in our study area (e.g. access to rooftops is usually restricted or reserved for other purposes), but our 
methodology is sufficiently generic that it can be applied to other parts of buildings and in different geographic locations. 
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estimating urban green areas at large scale using remote sensing data (e. 
g. Santos et al. (2016)), it may not be suitable for identifying potential 
urban farming sites as different crops are sensitive to different levels of 
sunlight referred to as photosynthetically active radiation (PAR) (Tan & 
Ismail, 2015). PAR forms the basis for the latter approach and is defined 
as the portion of solar spectrum, in the 400 to 700 nm wavelength range, 
that is utilized by plants for photosynthesis. Its amount is a key factor to 
understand whether there is a potential for farming and what kind of 
crops can be grown at a specific site because different crops require 
different PAR conditions for its optimal growth (Song et al., 2018). 
Conventionally, PAR assessment in different urban forms is accom
plished through field surveys that involves placing PAR sensors at 
selected locations such as a few spots in a building (Song et al., 2018; 
Tan & Ismail, 2014, 2015). The findings of these surveys suggest that, in 
a high density urban environment, different urban forms are exposed to 
different levels of PAR due to their shape, orientation, self-shadowing 
effects, and shadowing effects of surrounding objects (Tan & Ismail, 
2014). Furthermore, PAR at a given micro-location also varies due to 
changes in the sun’s position in the sky and different weather conditions 
(Song et al., 2018), thus, highlighting the need to understand the spatio- 
temporal characteristics of PAR at the building’s micro-locations. While 
these studies confirm that there is farming potential in residential 
buildings, they are: (i) constrained – only a limited number of locations 
can be covered with sensors, and as this paper will show, there might be 
a large variation of PAR even at the same side of a building between 
different levels; and (ii) arduous – as the surveys require field visits and 
the sensors have to be installed for an extended time period such as 
weeks rather than enabling instantaneous measurements. Furthermore, 
they have not suggested ways on how to possibly go about estimating 
the potential at the urban scale. 

This paper investigates whether three-dimensional (3D) city models 
can be used to assess the suitability of particular micro-locations in high- 
rise buildings for urban farming, leading to bypassing building visits and 
measurements while taking into account the peculiarities associated 
with sunlight availability in built environments, and calculating the 
potential of unlocking under-utilized spaces in residential buildings for 
urban farming. Our work capitalizes on the rich body of knowledge on 
using 3D city models for understanding the benefit of installing solar 
panels in buildings (Section 2) and adapts the work to enable simula
tions suited for gathering the potential of urban farming (Section 3). The 
study has run environmental simulations to analyze the spatio-temporal 
characteristics of PAR, assess adequacy of PAR received for growing 
crops, and understand the influence of different weather conditions, self- 
shadowing, and shadowing effects of nearby urban forms. Unlike the 
vast majority of papers dealing with simulations in 3D GIS, we conduct 
field measurements to verify the veracity of the simulations and 
conclude that 3D city models are a viable instrument for calculating the 
potential of spaces in buildings for urban farming (Section 4). To the best 
of our knowledge, 3D city models have not been used for this purpose 
before. Our results are important because conducting field visits and 
undertaking PAR measurements to identify all locations in these build
ings that receive adequate sunlight for growing crops can prove to be a 
difficult task, and the work can lead to estimations of the urban farming 
potential at the precinct or at the urban scale, enabling future studies 
considering thousands of buildings at once, similar to other applications 
in (3D) GIS. In this complete process of employing 3D city models from 
acquisition all the way to analysis and extraction of insights, this paper 
also presents an alternative method of estimating building heights in the 
absence of conventional data by measuring staircases, which has not 
been documented in the existing academic literature. 

2. Literature review 

Geospatial technologies have been applied for long across diverse 
agricultural and allied activities such as precision farming (Wilson, 
2005), assessment of land suitability for agriculture (Bandyopadhyay, 

Jaiswal, Hegde, & Jayaraman, 2009), suitability analysis for beekeeping 
sites (Estoque & Murayama, 2011), and more recently quantification of 
potential green cover on rooftops (Santos et al., 2016). However, hith
erto 3D geoinformation has not been used to identify urban farming sites 
despite their wide usage to assess the availability of solar energy in built 
environments for installing photovoltaic panels on buildings (Catita, 
Redweik, Pereira, & Brito, 2014; Freitas, Catita, Redweik, & Brito, 2015; 
Martínez-Rubio, Sanz-Adan, Santamaría-Peña, & Martínez, 2016; Red
weik, Catita, & Brito, 2013; Saretta, Bonomo, & Frontini, 2020). These 
simulations, which are primarily focused on rooftops of buildings, are 
used to determine whether a particular part of a building/rooftop re
ceives sufficient solar exposure to warrant the installation of a solar 
panel. The amount of solar exposure is primarily influenced by the 
geographic location, orientation, and nearby objects that cause (self-) 
shadowing. The fact that 3D city models provide sufficient information 
for such simulations catalyzed the development of this long-standing 
research line. 

Since urban farming much depends on the available level of light, 
which directly dictates the suitability of particular types of crops and 
influences the agricultural yield of crops (as much as it drives the energy 
yield of solar panels), our work takes advantage of the developments in 
the energy department, and seeks into leveraging them for a different 
purpose essentially establishing a new research line marrying urban 
agriculture and 3D GIS. 

Given that an integral component of our work is generating a 3D 
model of the study area, it is worthwhile to provide a short literature 
review of the process. Most 3D city models are generated by extrusion, 
combining building footprints and data on building heights, usually 
obtained from lidar point clouds (Dukai, Ledoux, & Stoter, 2019). This 
process results in block building models (or LOD1 as per CityGML/Cit
yJSON (Gröger & Plümer, 2012; Ledoux et al., 2019)), which despite 
their coarse nature have proven useful in scores of simulations such as 
predictions of the impact of noise in the built environment (Stoter et al., 
2020). 

However, point clouds, a reliable but expensive source of building 
heights, are often unavailable, as it is the case for our study area. To 
counter this gap, alternative methods of deriving building heights in 
absence of direct elevation measurements have emerged. Biljecki, 
Ledoux, and Stoter (2017) review several of them concluding that the 
most common unorthodox approach is using the number of levels of a 
building as a proxy for its height, which continues to be engaged in many 
studies, such as for energy simulations (Cheng et al., 2020). Another 
method, recently published in this journal, demonstrates that heights 
can be estimated from a single photograph captured through smart
phones (Bshouty, Shafir, & Dalyot, 2020). While for our study area we 
have at disposal a 3D city model generated using open data on building 
levels, which is reasonably accurate, we take advantage of the fact that 
all buildings there are publicly accessible (being public housing build
ings) and count the number of stairsteps across their vertical extent. As 
trivial as this approach appears, we believe that it is powerful, pre
senting another contribution of ours, which may warrant attention for 
future investigations, especially in the context of crowdsourcing build
ing heights. 

3. Materials and methods 

3.1. Study area 

The study area consisted of the buildings situated on Jurong West 
Street 65 in Singapore (Fig. 2). Jurong West is a residential town in the 
West region of Singapore. For the analyses, we focused on the façades 
having corridors and window ledges of public housing building ‘Block 
633’. According to Kosorić, Huang, Tablada, Lau, & Tan, 2019, these 
micro-locations are the most preferred for farming among the occupants, 
presenting an appropriate focus. The construction of ‘Block 633’ was 
completed in 2000. This residential building has 138 dwelling units 
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spread over 16 levels (Housing & Development Board, 2020), and it 
shares the same design as many other public housing buildings across 
Singapore, rendering our study generic and not constrained to a 
particular building. Three of its sides have other residential buildings 
and a multi-storey car park adjoining them. The fourth side has a school 
and another residential building across the street (Fig. 3). The dense 
built form inevitably results in shadowing, compounding the uncer
tainty of the amount of solar exposure required for urban farming and 
cultivating particular crops. 

3.2. Dataset 

A 3D city model of the study area is available as open data (Biljecki, 
2020). This dataset has been generated combining building footprints 
available in OpenStreetMap with the number of levels released by the 
public housing agency. In order to double down on the accuracy of the 
data, we have investigated whether there are alternative approaches to 
estimate the building heights, which would be somewhat more accurate 
than using the number of levels as a proxy. To estimate building heights, 
the number of stairsteps from ground level/floor to the top level were 
counted, for each building around the block in focus. The floor-to-floor 
height was obtained by multiplying the stairstep count between two 
consecutive levels with the measured stairstep height. The derived floor- 
to-floor height was in consonance with the typical level one and floor-to- 
floor heights of 3.6 m and 2.8 m respectively in these buildings (Housing 
& Development Board, 2014). Finally, the building height was estimated 
by summing the floor-to-floor heights across all levels in the building 
(Housing & Development Board, 2020). The generated 3D city model of 
the study area is shown in Fig. 4. 

3.3. Methodology, simulations, and tools 

The methodology consists of conducting solar exposure estimations 
adapted for urban agriculture and vertical spaces, and carrying out 
conventional measurements to verify the results. 

For the simulations, Blender v2.79a and VI-Suite v0.4 have been 
used. VI-Suite is a free open source add-on package for Blender, a pop
ular 3D computer graphics software. It consists of building environment 
performance simulation modules that allow 3D geospatial data analysis 
and visualization (Southall & Biljecki, 2017). It has the ability to (1) 
process large 3D geospatial datasets through a user-friendly interface, 
(2) integrate customized Python scripts, and (3) export the simulation 
results in comma separated values format for subsequent analysis; which 
made it suitable for this research and which we have done transporting 
the results to R v3.6.3. It is important to note that these tools are free and 
open-source, so together with the open data (Section 3.2), it means that 
our work relies entirely on open sources, facilitating its reproducibility. 

This study has used VI-Suite modules for sun path, shadow map, and 
lighting analysis. While sun path analysis displays the sun’s position and 
its trajectory relative to the 3D model at any date, time and location; 
shadow mapping, on the other hand, calculates the percentage of time of 
the simulation period a location was exposed to direct sunlight on a 
sunny day. For these analyses, VI-Suite uses some of the in-built func
tionalities of Blender (Southall & Biljecki, 2017). With lighting analysis, 
it is possible to calculate the irradiance values at discrete moments in 
time (referred to as basic lighting in VI-Suite) as well as the cumulative 
solar radiation received at a location over the simulation period (also 
known as Climate Based Daylight Modeling (CBDM)). For lighting 
analysis, VI-Suite uses Radiance lighting simulation suite in the back
ground. Radiance is based on a backward ray-tracing daylight simula
tion method and is considered among the best freeware available for 

Fig. 2. Study area: Block 633, Jurong West Street 65, Singapore.  

Fig. 3. Buildings surrounding the public housing block in focus (Google Earth - WebAssembly, 2020a, 2020b).  

Fig. 4. 3D model of the study area, generated from open data and using open- 
source software. 
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daylighting analysis (Freitas et al., 2015; Ward, 1994). 
This research mainly focused on environmental simulations during 

three periods: (I) 02 Mar 2020 6 am – 11 Mar 2020 6 am, (II) 15 Mar 
2020 6 am – 25 Mar 2020 6 am, and (III) 27 Mar 2020 6 am – 06 Apr 
2020 6 am, accompanied by PAR surveys conducted in the study area. 
Instantaneous PAR was measured at several locations along the corri
dors of the residential building (I, II) and one of the window ledges of a 
dwelling unit (III). PAR was measured using Onset PAR Smart Sensor (S- 
LIA-M003) with a sampling interval of 1 s and mean values logged at 5- 
min intervals in HOBO Micro Station (H21-USB and H21-002) data 
logger. Prior to conducting survey, these sensors were calibrated against 
an Odyssey PAR logger according to the manufacturer’s manual.1 These 
sensors were placed on various levels of the building along the corridor 
railings of façades A, B, and C and on one of the window ledges of façade 
W (Fig. 5a, b, and c). Sky conditions/daily weather forecasts were also 
monitored during these periods (The Weather Channel, 2020; Weather, 
2020). 

The precise location of each sensor placed in the building was 
determined using a measuring tape. To match these locations in the 3D 
model, each façade of the 3D model in Fig. 5c was converted into a 16 ×
16 grid (Fig. 5d2). Matching the positions of sensors to the corre
sponding grid cells in the 3D model is essential to enable comparisons. 
Height and width of the façades in the 3D model were determined from 
the local coordinates of their vertices. Based on proportionality and 
determined height and width of the façades, each sensor location in the 
building was mapped to the corresponding grid cell in the 3D model 
(Fig. 5d). To illustrate, during survey period I, sensors were placed in 
grid cells 6 and 12 at levels 2, 5, 8, 12, and 16 of façade B. 

Running simulations in VI-Suite requires one or more of the 
following as inputs: (1) latitude/longitude information of the study area, 
(2) weather data of the study area in EnergyPlus Weather (EPW) format, 
(3) sky/weather condition (called skytype in VI-Suite) namely, sunny, 
partly cloudy, and cloudy during simulation period, and (4) start date/h 
and end date/h of the simulation period. This study used the weather 
data of Singapore available on EnergyPlus website (American Society of 
Heating, Refrigerating and Air-Conditioning Engineers, 2001) which has 
also been used in Tan and Ismail (2014, 2015). Skytype during survey 
periods (Fig. 6) were based on National Environment Agency’s 24-h 
weather forecast for the West region (Weather, 2020). This forecast is 
typically available for morning (6 am–midday), afternoon (midday–6 
pm), and night (6 pm–6 am). In these forecasts, ‘Fair’ and ‘Fair & Warm’ 
sky conditions were classified as ‘Sunny’ and ‘Showers’ and ‘Thundery 
Showers’ sky conditions were classified as ‘Cloudy’. 

Start date/h and end date/h of the simulations were decided based 
on the objectives of this study. Sun-paths were generated for the first (02 
Mar) and the last day (05 Apr) of the PAR survey. Rendered images from 
solar illumination at 10 am and 1 pm were also produced for these days 
to show the movements of shadows casted by buildings during and be
tween these days. Shadow maps of façades were generated for a sunny 
day (17 Mar) of the survey period. Maps were produced at discrete 
moments in time (10 am, 1 pm, and 4 pm) and for different time periods 
(7 am–1 pm, 1 pm–7 pm, and 7 am–7 pm) to highlight the shadowing 
effects during the day. PAR simulations were carried out, using basic 
lighting analysis, at 10 am, 1 pm, and 4 pm on a sunny (17 Mar), partly 
cloudy (09 Mar), and cloudy (03 Apr) day to analyze the spatio-temporal 
distribution of PAR on the façades under different weather conditions. 
PAR simulations without the ground plane were also carried out for 
these time instances on the sunny day to demonstrate the effects of 
ground reflections. Simulated PAR (in μmol m− 2 s− 1 (Ψ)) were obtained 
by multiplying the solar irradiance (in W m− 2) from VI-suite by 2.02 

(Mavi & Tupper, 2004, p.36; Foken, 2017, p.257). Measurement units 
are one of the principal difference in comparison to studies focused on 
assessing the suitability of installing photovoltaic panels. For assessing 
the level of sunlight availability, the results from such simulations 
cannot be used directly, but have to be converted to other units, which 
are not supported by simulation software. 

While PAR refers to the instantaneous amount of solar radiation, 
according to Song et al. (2018), the adequacy of sunlight for crop growth 
is expressed in terms of DLI which is defined as the cumulative instan
taneous PAR over 24-h period. Thus, DLI (in mol m− 2 day− 1 (Φ)) can be 
calculated for each sensor location in the study area using the equation: 

DLI =
∑288

i=1

(
ithmean logged instantaneousPAR (inΨ)× 5× 60

)
× 10− 6  

where, i depicts the ith 5-min interval in 24-h period. For each location, 
average DLI can also be derived from these DLI for each survey period. 
The DLI equivalent in VI-Suite was obtained by using CBDM analysis 
wherein the hourly beam and diffuse solar radiation data of Singapore 
was taken in EPW format (Southall & Biljecki, 2017). For each grid cell, 
cumulative solar radiation (expressed in kWh m− 2) was obtained for the 
whole year as well as for the months of March, June, September, and 
December. Average values were obtained for each grid cell by dividing 
these cumulative values by the corresponding number of days in the 
month/year. Finally, simulated DLI (in Φ) was obtained by multiplying 
the averaged values with 7.272 (1 kWh m− 2 day− 1 = 3.6 × 2.02 Φ). 
These simulated DLI were rounded off to the nearest integer and then 
compared with the known DLI of different crops (Faust, 2002; Song 
et al., 2018) to identify the suitable crops for a given location. Lastly, 
hourly measured and simulated PAR from 7 am to 7 pm were obtained 
for each sensor location during the survey periods. Spearman’s corre
lation coefficient (ρ) was determined between them due to their non- 
normal distributions. They were also compared based on mean abso
lute error (MAE) and root mean square error (RMSE). To enable repro
ducibility of the work, other parameter values used in the simulations of 
sun path, shadow map, and lighting analysis of VI-Suite have been 
included in this paper (see Table A2 in Appendix A). 

4. Results and discussion 

4.1. Results 

The main result of the work is that 3D city models appear to be a 
promising tool for assessing the potential of urban farming in high-rise 
buildings and for identifying suitable sites. Further, simulations using 
3D city models can help to understand which crop is best suited for a 
particular site in a building. This section elaborates on the results in 
details. 

4.1.1. Sun path analysis 
Fig. 7 shows the hourly sun path diagrams, which illustrates the sun’s 

movement at different hours, on the first and last day of the PAR survey. 
The convoluted rings (∞) depict the hours of the day from dawn to dusk 
with central ring representing noon. The points (•) depict the sun’s 
position at the hour represented by the ring. In agreement with Fig. 2, 
this figure also indicates that ‘Block 633’ is oriented in the North West - 
South East direction. As a result, the sunlight distribution is uneven on 
different façades of the building owing to the sun’s movement from East 
to West from dawn to dusk respectively. While façades A and B that face 
North East and South East respectively received direct sunlight from 
morning till afternoon, façades C and W that both face South West 
received direct sunlight during the afternoon and evening hours. 

It can also be seen from the figure that the sun moved in the northern 
direction along the convoluted rings from 02 Mar to 05 Apr. In a typical 
year, the sun traverses from the southern extreme of this ring to the 
northern extreme during the first half (i.e. January–June) and in the 
reverse direction during the second half (i.e. July–December). This 

1 The respective calibration equations for the sensors along with coefficients 
of determination (R2) can be found in Table A1 in Appendix A. 

2 The numbers 1–16 on the vertical and horizontal axes in this figure repre
sent the ith level and grid cell respectively. 
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movement of the sun suggests a variation in PAR received at a given 
location. However, this variation during the year may not be significant 
in the context of this research due to the higher solar elevation given the 
equatorial position of Singapore (Tablada & Zhao, 2016; Tan & Ismail, 
2015). 

Fig. 8 shows the role played by shadowing effects on a day-to-day 
basis. It can be seen from this figure that PAR received on different fa
çades of the buildings was affected by the shadows casted by the 
building’s own façades and surrounding buildings. Further, the size of 
these shadows varied at different hours of the day owing to the sun’s 
diurnal motion from East to West. For example, façade B is partly 
shadowed by façade C and shadow casted by a nearby building in the 
morning and as the day progresses, these shadowing effects recede. In 
addition, the size and the orientation of these shadows are affected by 
the annual motion of the sun which can be observed from the buildings’ 
shadows in the figure on the first and last day of the PAR survey. For 

example, the size of the shadow casted by façade C on façade B at 10 am 
is relatively larger on 05 Apr as compared to 02 Mar. Moreover, the 
shadows casted also depend on the shape of the building. For instance, 
shadow casted by ‘Block 633’ on itself and nearby buildings differs from 
the shadows casted by nearby buildings of different shapes in the study 
area. 

4.1.2. Shadow map analysis 
Shadow maps (Fig. 9) indicate that different areas of façades A, B, C, 

and W receive direct sunlight for different durations on a sunny day. 
Façade A received direct sunlight only for a small duration till noon 
which has been affected by shadowing effects of adjacent façade and 
nearby building. The direct sunlight received on Façade B from 7 am–1 
pm and 1 pm-7 pm is affected by the shadowing effects of adjacent fa
çades (including façade C) and buildings, and by the sun’s diurnal mo
tion respectively. Although façades C and W face in the same direction 

Fig. 5. Façade description and sensor placement in the study area during survey periods.  
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and received direct sunlight for same duration from 7 am–1 pm, the 
percent of time they received direct sunlight from 1 pm–7 pm varied due 
to the shadowing effects of façade B and nearby building respectively. It 
is also observed that the duration of time a façade is exposed to direct 
sunlight increased with the height of the building. However, except for 
façade W, there is only a small area of façades B and C which received 
direct sunlight for more than equal to 50% of the daytime (i.e. 7 am–7 
pm). While façade B received most of this sunlight during the first half of 
the day, façades C and W received it during the second half. Further, 
these areas are mostly located at level 11 & above for façade B and level 
15 & above for façade C. Façade A received direct sunlight for about 
40% of the daytime only on level 16. For rest of the daytime, all these 
façades received indirect sunlight. As different crops have different light 
requirements, they may only achieve optimum growth when placed at 
certain façades that can meet the crops’ light requirements. 

4.1.3. PAR and DLI analysis based on lighting simulations 
Fig. 10a shows that on a sunny day PAR exceeds 500Ψ on façades A 

and B in the morning hour except for locations which were shadowed by 
adjacent façade(s) and building. However, as the day progresses, PAR 
tend to remain below 300Ψ. A trend reversal was observed in case of 
façades C and W where PAR at or below 300Ψ was observed in the 
morning followed by PAR exceeding 500Ψ in the later hours of the day. 
Further, enormously high PAR observed on the lower levels of façades B, 
C, and W were due to ground reflections (Fig. 10b) which are a 
component of indirect sunlight. It is admitted here that such PAR levels 
from ground reflections are not observed in practice, can be attributed to 
high reflectance given to ground plane (Lu & Du, 2013, p.171), and is a 
limitation of the simulations carried out in VI-Suite. In the absence of 
ground reflections, PAR was found to increase with height on these fa
çades during these times. PAR on the same level of the façade was found 
to be uniform except in cases where shadows were casted by adjacent 
façade(s) and building. In such cases, on an average, PAR was reduced 
by 58% of the PAR observed in unshaded conditions on the same level 
(Table A3 in Appendix A). 

PAR on different façades during a partly cloudy day (Fig. 11a) fol
lowed similar trend as that of a sunny day that is, PAR decreased on 
façades A and B and increased on façades C and W through the day. 
While the maximum PAR observed on façades A and B was about 150Ψ 
and 200Ψ respectively pre-noon, it remained below 50Ψ and 100Ψ 
respectively post-noon. PAR on façades C and W at 10 am, 1 pm, and 4 
pm remained below 120Ψ, 150Ψ, and 200Ψ respectively. PAR showed 
an increasing trend with height at 10 am for façades A and B and for all 
façades at 4 pm. In other cases, PAR remained in a narrow range with no 
incremental trend with height. On the same level of a façade, on an 
average, PAR under shaded conditions was reduced by 40% of the PAR 
in unshaded conditions (Table A3 in Appendix A). Abnormally high PAR 
on lower levels of façades were also observed on partly cloudy day. 

Shadowing effects did not have a significant impact on PAR distri
bution on a cloudy day (Fig. 11b) primarily due to the cloud cover and 
no particular trend in PAR on façades was observed through the day. 
Further, maximum PAR observed for all the façades at 10 am, 1 pm, and 
4 pm was around 90Ψ, 100Ψ, and 50Ψ respectively. For all the façades, 
PAR was found to increase with height while remaining in a narrow 
range. 

The annual average DLI on façades A, B, C, and W ranged between 5 
& 12 Φ, 1 & 12 Φ, 7 & 13 Φ, and 12 & 15 Φ respectively (Fig. 12). For all 
the façades, these values increased with height. Further, average DLI 
above 9Φ was observed in all grid cells of façade W and in some grid cells 
of façades A, B, and C above levels 12, 6, and 7 respectively. The number 
of grid cells with these values on façades A, B, and C also increased at 
higher levels. The variation in average DLI on a given level, if any was 
the cumulative result of the shadowing effects of the adjacent façade(s) 
and building(s) and changing weather conditions as per the EPW data. 

The monthly average DLI for March, June, September, and December 
(Fig. 13) demonstrated similar trends as that of annual average DLI. 
While the range of monthly average DLI for the façades remained almost 
same, the levels at which the average DLI exceeded 9Φ in the grid cells 
varied significantly across the months for all the façades except façade W 
(Table A4 in Appendix A). 

4.1.4. Comparison of measured and simulated PAR 
Spearman’s ρ between measured and simulated PAR, considering all 

skytypes and sensor locations on façades together (Fig. 14), was deter
mined to be 0.62. MAE and RMSE were found to be 176.9Ψ and 365.2Ψ 
respectively. Location wise analysis showed that under all skytypes, ρ 
was between 0.52 and 0.74 for all sensor locations except for 12a3 where 
it was 0.45. In addition, relatively high values of MAE and RMSE were 

Fig. 6. Skytype based on 24-h weather forecast during survey periods.  

Fig. 7. Hourly sun path diagrams on first and last day of the PAR survey.  

3 Sensors placed on the same level of a façade were labelled as ‘a’, ‘b’, and so 
on starting from the left in Fig. 5d. 
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Fig. 8. Solar illumination at different hours of the first and last day of survey.  

Fig. 9. Shadow maps on a sunny day (17 Mar).  
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observed for sensors placed on façade B at levels 8, 12, and 15. 
Under sunny skytype, all sensor locations together exhibited ρ, MAE, 

and RMSE of 0.66, 233.2Ψ, and 407.3Ψ respectively. Observations 
similar to all skytypes were also made for sunny skytype for individual 
sensor locations with ρ between 0.58 and 0.82 except for 12a (ρ = 0.45) 
and relatively high values of MAE and RMSE for sensors at levels 8 and 
12 of façade B. 

When all sensor locations were considered together, ρ, MAE, and 
RMSE under partly cloudy skytype were comparable to sunny and all 
skytypes with values of 0.70, 170.1Ψ, and 389.7Ψ respectively. How
ever, location wise analysis showed that although MAE and RMSE were 
relatively high for sensors at levels 8, 10, 12, and 15 on façade B, ρ was 
between 0.51 and 0.92 except for sensors at 5a, 12a, 15, 16a, and 16b. 

Under cloudy skytype, ρ, MAE, and RMSE were 0.61, 135.9Ψ, and 
287.5Ψ respectively for all sensor locations considered together. ρ var
ied between 0.65 and 0.80 except for sensors at façade W where it was 
about 0.33. MAE and RMSE remained relatively low except for sensor at 
level 14 of façade C. 

4.2. Discussion 

Sun path analysis, shadow map analysis, and spatio-temporal anal
ysis of PAR and DLI suggest that PAR and DLI at a location in the 

building are dependent on the building’s shape and orientation, the 
sun’s diurnal and annual motion, skytypes, and shadowing effects of the 
building’s own façades and nearby buildings. Further, in contrast to 
Martínez-Rubio et al. (2016), it is not possible to adjudge the signifi
cance of one factor over another as all these factors have a cumulative 
effect on PAR and DLI at a given location and their individual signifi
cance may change with change in study area and study period. 

In agreement with Song et al. (2018), PAR on the façades in the study 
area remained largely similar as the façades were exposed to direct 
sunlight for similar durations owing to the sun’s diurnal motion. While 
façades A and B experienced higher PAR during the former half of the 
day, façades C and W experienced it during the latter half. However, this 
pattern was visible only for sunny and partly cloudy skytypes. No such 
pattern was observed under cloudy skytype primarily due to cloud 
cover. Further, PAR on the façades was significantly reduced moving 
from sunny to partly cloudy to cloudy skytypes. 

In addition to sunny skytype (Song et al., 2018), PAR on these fa
çades increased with height for cloudy skytype as well. However, no 
such trend was discerned for partly cloudy skytype as it is characterized 
by bouts of sunlight and cloud cover through the day. In consonance 
with the findings of Tan and Ismail (2014), on the same level of the 
façade, PAR was mainly affected due to shadowing effects of adjacent 
façade(s) and/or building. Based on some test cases, PAR reduction due 

Fig. 10. PAR distribution on façades on a sunny day (17 Mar).  
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to shadowing effects was found to be more under sunny skytype as 
compared to partly cloudy skytype. 

The annual as well as monthly average DLI ranged from 1 to 15 Φ at 
different locations on these façades with largely similar values on fa
çades across months. Confirming the finding of Song et al. (2018), 

average DLI increased with height. However, in real world, this trend as 
well as the higher average DLI observed on some façades may be affected 
due to presence of trees and other built structures at lower levels. Except 
for façade W, locations with average DLI exceeding 9Φ were mainly 
located at higher levels of the façades. This may be attributed to the self- 
shadowing and shadowing effects of adjacent buildings on the lower 
levels (Martínez-Rubio et al., 2016). The dry phase of Northeast 
Monsoon during January–March (Climate, 2020) and the sun’s position 
in the southern hemisphere leading to higher PAR on the façades can be 
the reasons for large number of grid cells with average DLI exceeding 9Φ 
in the month of March. 

The range of observed average DLI correspond to the DLI re
quirements of crops that belong to the very low light (< 5Φ), low light 
(5–10 Φ), and moderate light (10–20 Φ) categories. Out of these cate
gories, only crops grown under moderate light conditions are considered 
suitable for commercial production (Faust, 2002). Thus, crops such as 
sweet pepper (Capsicum annuum) and lettuce (Lactuca sativa) belonging 
to the moderate-light categories can be grown at locations where 
average DLI exceeds 9Φ on these façades (Song et al., 2018). 

Statistically significant and moderate to high values of ρ (> 0.5) 
under different skytypes suggests that positive linear relationship exists 
between measured and simulated PAR, affirming the usability of 3D city 

Fig. 11. PAR distribution on façades on a partly cloudy and cloudy day.  

Fig. 12. Annual average DLI distribution on façades.  
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models for this use case. High values of MAE and RMSE suggest that the 
simulated PAR deviate from the measured PAR. Thus, the simulated PAR 
was able to capture the trend followed by measured PAR at a sensor 
location but not its values. There are mainly three reasons for this. 
Firstly, the 3D model used for carrying out simulations was LOD1 model, 
excluding vegetation. The present model did not take into account the 
architectural elements of the façades such as cantilevered louvres with 

perforated sunscreen above the windows, roof overhangs on level 16, 
among others and the presence of trees causing shadows at lower levels. 
As a result, simulations do not account for their effects on PAR at a 
location. Although higher detailed (i.e. LOD3) models can take care of 
façade’s architectural elements, past research suggests that these models 
are generally available for a small study area and their non-availability 
becomes a constraint when considering a larger study area. 

Fig. 13. Average DLI distribution on façades for selected months.  

Fig. 14. Metrics for comparing measured and simulated PAR.  
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Secondly, hourly simulated PAR generated at various sensor loca
tions for comparison with measured PAR were based on the 24-h 
weather forecasts and not the actual weather conditions. Cases have 
emerged where PAR measured through sensors on a cloudy day were 
found to be equivalent to those measured on a sunny day. For instance, 
as seen in Fig. 15, PAR logged at location 9a around 3 pm on 27 Mar 
(cloudy day) matched to those measured on 31 Mar (sunny day). PAR 
logged around 3 pm on 27 Mar were very high as compared to those 
logged for another cloudy day (04 Apr) around the same time. Such 
differences in actual and forecasted weather conditions have resulted in 
exceptionally low ρ and high MAE and RMSE for the cloudy sky con
ditions on façade W. Relatively low ρ and relatively high MAE and RMSE 
observed at sensor locations on façade B and level 14 of façade C for 
partly cloudy and cloudy sky conditions can also be attributed to the 
same reason. These outliers have significantly impacted the perfor
mance of otherwise fairly accurate simulations. While it may be possible 
to reduce this error source by using actual weather conditions, this shall 
go beyond the scope of this paper due to non-availability of a credible 
source of open data at this temporal scale and due to large variability of 
cloud cover between locations in Singapore (Tan & Ismail, 2015). 

Lastly, the inability of these simulations to model the sharply con
trasting periods of low and high PAR is another reason for deviation in 
measured and simulated PAR. To illustrate the same, Fig. 16 shows 
measured and simulated PAR at location 12a on a sunny day (02 Mar) at 
5-min and half-hourly intervals respectively with PAR at half-hourly 
intervals highlighted with points (•). This particular location is free 
from any obstacles that may possibly affect measured PAR. As seen in 
the figure, this high variability in PAR is observed around noon when the 
sun is positioned right above and moving past façade B. Consequently, 

such variable sunlight conditions (Smith & Berry, 2013) can be attrib
uted to the parapet edges of the higher levels which have been captured 
by the PAR sensor also placed on the railing of the corridor’s parapet 
(Fig. 5a). Same reasoning can also be applied to sensors placed at levels 
8, 10, and 15. On the same level of façade B, relatively better values of 
these metrics for location ‘b’ (e.g. 12b) than location ‘a’ (e.g. 12a) is due 
to the fact that these locations were shadowed by façade C for some 
duration (e.g. 7 am-1 pm in Fig. 9) when this façade received direct 
sunlight. As a result, some of these variable sunlight episodes were not 
observed in measured PAR for these locations. Given these reasons, 
simulated PAR data compare fairly well with measured PAR. 

The excessive irradiation captured by the PAR sensor over short 
durations around noon also contribute to the DLI at the sensor location. 
Consequently, these variable sunlight episodes may result in crop’s 
reduced photosynthetic performance in the built environment (Song 
et al., 2018; Tan & Ismail, 2014) due to its mistaken selection based on 
inflated DLI. By not being able to model these episodes, simulations 
eliminate locations that receive higher DLI due to these bouts of highly 
variable intensity of sunlight. At the same time, this also results in un
derestimation of DLI at a location found suitable for farming. Thus, some 
caution may have to be exercised during crop selection. Only those crops 
having threshold DLI obtained through simulations and which are 
tolerant to these episodes would be suitable for such locations. 

Sunlight availability is often the limiting factor for crop growth when 
sufficient water and nutrients have already been supplied to the crops in 
well managed farming systems. Various studies have used PAR to predict 
potential productivity of crops with known leaf area index and light use 
efficiency (Puleston et al., 2017; Zhao & Running, 2010). However, such 
predictions were only conducted for traditional large-scale farmlands. 
To do similar prediction for vertical spaces of buildings, it would be 
necessary to estimate PAR and DLI in buildings using 3D modeling. The 
results in the previous section and the above discussion have not only 
corroborated the findings of the existing literature but have also 
contributed toward an enriched understanding of PAR and DLI at 
different micro-locations of the same building as well as in different sky 
conditions. Particularly, it highlighted how 3D city models can facilitate 
understanding of the sun’s diurnal and annual motion in the study area 
and enable estimating the shadowing effects and DLI for locations that 
may not be easily accessible to PAR surveys (e.g. windows of dwelling 
units). Based on these estimations, crops such as lettuce and sweet 
pepper were found suitable for growing in the vertical spaces of the 
study area. However, the presence of various architectural elements on 
these vertical spaces diminish the possibilities of large scale commercial 
farming and may only favour subsistence farming. Thus, with 3D city 

Fig. 15. Measured PAR at location 9a on sunny and cloudy days during 
period III. 

Fig. 16. Measured and simulated PAR for location 12a on a sunny day (02 
Mar), which has the highest discrepancy. 

Fig. 17. Average DLI for March on façades of the study area. These results are a 
critical insight for decision-making for high-rise urban farming and for maxi
mizing the crop yield. 
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models it is possible to assess the suitability of a micro-location in a 
building for farming; alleviating the need to conduct PAR survey and 
simultaneously showcasing their new application. Insights drawn from 
these analyses for rooftops, façades, and other potential farming loca
tions in buildings can be used by decision makers to assess farming 
potential at urban scale at a glance. For instance, they can map the lo
cations of grid cells found suitable for farming (Fig. 17) with corre
sponding locations in 3D modeling tools such as Blender and Google 
Earth (Fig. 3) and examine whether it is practically possible to do 
farming at those locations. This can then be further utilized to guide 
urban farmers in crop selection and appropriate cropping cycle based on 
DLI estimations along with best farming practices to maximize their 
agricultural produce. Urban farming companies can also benefit from 
such analyses while performing their on-site assessments and identifying 
potential urban farming sites. They would also be able to predict their 
yearly crop yield based on the DLI estimations at different locations of 
the building. The 3D modeling approach together with the predicted 
crop yield can also help local government to predict the level of self- 
sufficiency the city can achieve and to better plan their land use pol
icies (Diehl et al., 2020). Not to mention, while the present paper has 
only focused on a particular building in Singapore, the methodology 
employed to generate 3D city models and the analyses carried out herein 
are equally applicable to other high-rise buildings within and beyond 
Singapore. 

4.3. Limitations 

While the results and subsequent discussion suggest that 3D city 
models can support urban farming site identification in buildings and 
help deciding which crop to grow at which site, they suffer from some 
limitations. Firstly, EPW data used in DLI simulations in this paper 
correspond to the 1990s. As a result, the actual DLI in the present con
ditions may differ from the simulated DLI. However, significant varia
tions in DLI at the scale of months/year, which have been used in the 
analysis, are not expected given the equatorial position of Singapore. 
Secondly, besides the limitation associated with ground reflections, this 
version of VI-Suite does not account for leap year, 2020 being one. While 
large variations in simulated PAR were not observed between consecu
tive days, it is hoped that this and other limitations will be rectified in its 
upcoming versions. Lastly, vegetation around buildings may play an 
important role in solar exposure assessment, which we did not have in 
our 3D city model. 

5. Conclusion 

This paper investigated a new application of using 3D city models to 
identify urban farming sites in buildings and understand their potential 
for growing particular crops based on sunlight properties derived by 
simulations. It capitalized on the prior work relying on 3D city models to 
estimate the solar potential for assessing the suitability of installing 
photovoltaic panels on rooftops, and adapted it for a significantly 
different purpose and of a different nature with certain particularities 
(urban farming) and different locations (vertical spaces of buildings). 
Our work includes field measurements to verify the integrity of the 
simulations, which is a rarity in related work. The important points from 
this work are:  

• There is a large variation in the level of available sunlight within a 
building, requiring understanding the potential of different sites for 
urban farming at a micro-location scale.  

• 3D city models can be conveniently used to support urban farming by 
identifying such sites in an approximate manner. They have an 
unparalleled advantage over doing field measurements when there 
are many more locations to evaluate and especially when scaling up 
the estimations at the precinct or urban scale to cover thousands of 
buildings, which is in practice impossible to carry out with field 
measurements.  

• Such analyses can be conducted using block (LOD1) models obtained 
from open data, and the simulations can be run using open-source 
software, facilitating replication elsewhere and scalability to cover 
entire cities. 

We believe that this novel use case has rich potential to be further 
researched, and there are several avenues for expanding this work. 
Quantifying the farming area and the projected crop yield in a building 
is the first one (Shao, Heath, & Zhu, 2016). Improving simulation ac
curacy by employing datasets including vegetation and using 3D models 
of higher detail such as architectural models which are becoming 
increasingly common (Biljecki et al., 2021), integrating dynamic and 
indoor data which is a promising research direction in 3D city modeling 
(Konde, Tauscher, Biljecki, & Crawford, 2018; Kutzner, Chaturvedi, & 
Kolbe, 2020), and experimenting with different material types for 
ground surfaces offer another line of future work. Most importantly, 
growing crops at farming locations identified through simulations would 
be the real test of 3D city models. It is hoped that these lines of research 
will show the path to accurately estimate the farming potential in 
buildings and provide thrust to undertake this activity at the urban scale. 
As another possible future work direction, it is also foreseen that once 
the potential is assessed and the ensuing urban farming activities in 
buildings commence, 3D city models — optionally coupled with addi
tional data such as legal matters — can be used also to manage them and 
serve as a registry for coordination purposes, for example, for organising 
the provision of subsidies and for issuing permits for farming in public 
buildings. Finally, it would be interesting to investigate whether this use 
case can be combined with assessing the suitability for installing solar 
panels and energy simulations, recommending the optimal mix and 
arrangement of photovoltaic installations and agricultural crops in the 
same building, presenting a holistic solution for supporting green 
buildings and sustainable development. 
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Table A1 
Calibration equations for the PAR sensors used in the survey.  

PAR sensor ID Calibration equation R2 

2258–3 Y = 0.9918X + 79.884 0.9034 
2558 Y = 0.861X + 98.593 0.8953 
2559 Y = 0.9802X - 28.555 0.9009 
2896–5 Y = 0.952X - 18.332 0.9021 
2897–8 Y = 0.9133X + 65.485 0.9012 
2902–10 Y = 0.9448X - 46.742 0.8982 
2904–9 Y = 0.9485X + 4.5319 0.9071 
8982–7 Y = 1.0185X - 38.092 0.9004 
8983–6 Y = 0.9928X + 7.4332 0.9042 
8986–4 Y = 1.0154X - 24.251 0.9030   

Table A2 
Parameter values for simulations in VI-Suite.  

Analysis/Simulation type Parameter name Parameter value 

Sun path Suns Single or Hourly 
Thickness 0.15 

Shadow map Animation Static 
Result Point Faces 
Offset 0.01 

Basic lighting Result Point Faces 
Offset 0.01 
Program Gensky 
Ground ref 0.00 
Turbidity 2.75 
Accuracy Medium 

Climate Based Daylight Modeling Result Point Faces 
Offset 0.01 
Type Exposure 
Accuracy Final   

Table A3 
Percent (%) reduction in PAR under different sky conditions.  

Skytype Time Façade Level # Unshaded grid cell Shaded grid cell % reduction 

# PAR # PAR  

(μmol m− 2 s− 1) (μmol m− 2 s− 1)  

Sunny (17 Mar) 10 am A 13 10 568 9 259 54.40 
10 am B 5 9 653 10 341 47.77 
10 am B 10 12 570 13 256 55.08 
1 pm C 5 5 434 4 240 44.70 
4 pm C 13 11 606 10 84 86.13 

Partly Cloudy (09 Mar) 10 am A 13 11 130 10 85 34.61 
10 am B 5 10 151 11 98 35.09 
10 am B 10 12 145 13 90 37.93 
1 pm C 5 3 90 2 56 37.77 
4 pm C 13 10 146 9 63 56.84   

Table A4 
Monthly average DLI range and levels with average DLI above 9 mol m− 2 day− 1.  

Month Façade Range Levels at which average DLI exceeds 9 mol m− 2 day− 1 

Minimum Maximum 

(mol m− 2 day− 1) (mol m− 2 day− 1) 

March A 5 12 14 and above 
B 1 13 all 
C 7 13 all 
W 12 15 all 

June A 5 14 10 and above 
B 1 10 15 and above 
C 4 10 14 and above 
W 11 13 all 

September A 5 12 13 and above 
B 1 12 9 and above 
C 6 12 9 and above 
W 12 14 all 

December A 4 10 16 

(continued on next page) 
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Table A4 (continued ) 

Month Façade Range Levels at which average DLI exceeds 9 mol m− 2 day− 1 

Minimum Maximum 

(mol m− 2 day− 1) (mol m− 2 day− 1) 

B 1 15 all 
C 8 14 1, 2, 7 and above 
W 10 15 all  
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