
Computers and Electronics in Agriculture 181 (2021) 105979

Available online 15 January 2021
0168-1699/© 2021 Elsevier B.V. All rights reserved.

Original papers 

Event dependence and heterogeneity in the adoption of precision farming 
technologies: A case of US cotton production 

Krishna P. Paudel a, Ashok K. Mishra b,*, Mahesh Pandit c, Eduardo Segarra d 

a Department of Agricultural Economics and Agribusiness, Louisiana State University (LSU) and LSU Agricultural Center, Baton Rouge, LA 70803, USA 
b Morrison School of Agribusiness, W.P. Carey School of Business, Arizona State University, AZ 85212, USA 
c Comerica Bank, Dallas, TX 75201, USA 
d Department of Agricultural and Applied Economics, Texas Tech University, Lubbock, TX 79409, USA   

A R T I C L E  I N F O   

Keywords: 
Conditional frailty 
Event dependence 
Heterogeneity 
Time-varying component 

A B S T R A C T   

This study aims to examine event dependence and heterogeneity in the adoption of precision farming (PF) 
technologies. The study uses farm-level data and a conditional frailty model to estimate the empirical model. A 
novelty of this study is the introduction of a group level heterogeneity in the traditional conditional frailty model. 
The simulation model shows that the conditional frailty model addresses both event dependence and hetero-
geneity related issues in technology adoption. Results indicate that farmers with large farms, a higher share of 
total cultivated farmland, a higher percentage of income from farming, and farmers using computers for farm 
management are more likely to adopt PF technologies early on after a technology becomes available. Further, 
cotton producers who think that PF technology would be valuable in the future and those receiving farming 
information from university publications are more likely to adopt PF technologies soon after the technolo-
gies become available.   

1. Introduction 

The decision to adopt new precision technologies is influenced by 
farm and operator characteristics and other factors. High cost and low 
personal profit, for example, cause farmers to delay precision farming 
(PF)1 technology adoption (Gillespie et al., 2007; Watcharaanantapong 
et al., 2014). Other factors include risk aversion and perception of 
farmers (Liu, 2013; Chavas and Nauges, 2020), disposition effect 
(Vollmer et al., 2019), cognitive ability and receptiveness (Barham et al., 
2018), and heterogeneity in returns (Suri, 2011). Previous studies 
(Roberts et al., 2004; Walton et al., 2010; Paudel et al., 2020) have 
examined the factors associated with adopting PF technology in cotton. 
However, these studies have not addressed factors affecting the time it 
takes for farmers to adopt PF technologies once those become available 
to them. 

PF uses several technologies, and some farmers use only a few, while 
others adopt PF technologies and practices in the bundle (Lambert et al., 
2015). PF technologies include yield monitor with or without global 

positioning system (GPS), soil sampling using a grid or a zone method, 
aerial photos, satellite images, soil survey maps, handheld GPS/PDA, 
COTMAN plant mapping, digitized mapping, and electrical conductiv-
ity. Although PF technologies have been used by corn and soybean 
producers in the US, there has been a significant lag in the timing of 
adoption and acceptance among US cotton farmers. Cotton farmers in 
the US have also adopted several PF technologies, including the GPS 
guidance system (Khanal et al., 2019), precision nutrient management 
technology (Boyer et al., 2016), and variable rate nitrogen management 
technology (Stefanini et al., 2019). Ever-evolving progress in PF tech-
nologies has contributed to environmentally sound and profitable 
farming systems (Finger et al., 2019). Considering that adoption is an 
observation of an event, the lack of adoption of PF is a failure to observe 
the event. 

Only limited studies have analyzed the time taken to adopt a tech-
nology using the duration model. For instance, Gao et al. (2019), using 
the discrete-time hazard method (cloglog function) investigated the time 
taken by Chinese farmers from awareness of the technology to adopting 
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E-mail address: Ashok.k.mishra@asu.edu (A.K. Mishra).   

1 Precision farming (PF) refers to an information-based agricultural production system that helps to apply the right amount of inputs on crop production in the right 
place at a suitable time. PF, which has been in existence in agriculture since the mid-1980s, has helped farmers to realize increased profit and a better environment by 
applying the right amount of inputs (Bongiovanni et al., 2004, Roberts et al., 2004, Torbett et al., 2007, Watson et al., 2005). 
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green control techniques. The authors found that, among other things, 
education, risk, easiness to adopt, and government service involvement 
expedite the adoption while the household head being male slows down 
the adoption of green control techniques. In a recent study, Canales et al. 
(2020) investigated the time to adopt cover crops, variable rate tech-
nology, and no-till practices using data from farmers in Kansas, US. The 
authors found that complementarity was the main reason why farmers 
adopt new practices. Finally, Ofori et al. (2020) used panel data and 
semiparametric Cox proportional hazard model to study the time taken 
(time elapsed) by Kansas farmers in adopting technologies from the 
availability to the adoption of the PF technologies. The authors found 
that farming experience, farm size and crop insurance affected the 
timing of adoption of PF technologies. However, the above studies, 
including PF technology-related studies, have not considered correlated 
events and heterogeneity in modeling PF technology adoption decisions. 
Further, previous studies have not tested the suitability of models using 
empirical simulation. The present study fills these voids in the PF 
literature. 

The Cox proportional hazard model ([CPHM], Cox, 1972) and its 
extensions have been extensively used to model events in the duration 
analysis. The commonly used methods for duration analyses are Cox- 
proportional hazard (Cox, 1972, Andersen and Gill, 1982), shared 
frailty, and conditional frailty models (Box–Steffensmeier and Boef, 
2006). In the simple survival model, we assume no individual difference 
among farmers; however, this is not a case in applied work. Farmers 
have different intuitions regarding farming and have a specific farm and 
individual characteristics. These conditions lead to heterogeneity across 
individual cotton producers and result in a within-subject correlation in 
the occurrence and timing of recurrent events (adoption of new tech-
nology). Within-subject correlation implies that once a farmer adopts 
one PF technology, the farmer is more likely to adopt another PF tech-
nology. PF technology adoption in cotton production suggests that 
heterogeneity is present among farmers. Hence, this study addresses 
both heterogeneity and event dependence issues associated with tech-
nology adoption. 

Herein lies the objectives of this study. First, we identify the factors 
affecting farmers’ waiting time to adopt multiple-precision farming 
technologies. While it is true that farmers adopt technology for profit, to 
be at the forefront of technology and environmental benefits (Paudel 
et al., 2020), it is still puzzling why farmers wait to adopt seemingly 
promising technologies (Wozniak, 1993; Liu, 2013; Suri, 2011). Second, 
we analyze the duration of technology adoption that addresses hetero-
geneity and event dependence between PF technology adoptions among 
the US cotton farmers. A conditional frailty model accounts for hetero-
geneity with stratification and event duration dependence (Box-Stefen-
smeier and Boef , 2006). Other commonly used survival models are 
variance corrected, frailty, and shared frailty models (Paudel et al., 
2016). Frederiksen et al. (2007) address duration dependence and group 
heterogeneity in the duration model. Thus, the contribution of this study 
to the literature is on multiple fronts. First, the study adds a group- 
specific effect on the conditional frailty model to estimate the empir-
ical model. Second, from a policy perspective, findings can induce pol-
icymakers and technology firms to design incentives and policies to 
increase the PF technology adoption rate, simultaneously improving 
environmental quality and increasing farm profit (Finger et al., 2019). 
Third, the findings from this study could help in targeting PF technol-
ogies to the right group of farmers. 

The rest of the paper proceeds as follows. Section 2 introduces the 
concept of the hazard model and how heterogeneity and event depen-
dence necessitates the estimation of a conditional frailty model. After 
that, the study compares the performance of several different hazard 
models using the empirical simulation method. The simulation focuses 
on heterogeneity (in terms of PF technology adoption and dependency) 
among US cotton producers. Section 3 presents data, variable choice, 
and descriptive statistics. Section 4 estimates the model suggested by the 
empirical simulation results and shows the results of the study. Section 5 

concludes the paper. Supporting materials are relegated to the 
Appendix. 

2. Empirical framework 

A binary choice modeling procedure models a single PF technology 
adoption behavior of a cotton farmer. The binary modeling approach has 
several limitations. For example, a binary choice modeling approach 
does not provide a measure of the waiting time in the adoption of PF 
technology. In other words, how long do farmers wait to adopt PF 
technology once the technology becomes available in the market? A 
CPHM can be used when there are concerns regarding adopting multiple 
PF technologies and the time taken to adopt these technologies. A 
summary of the CPHM and its relevance to this study is presented in 
Appendix A.1. CPHM assumes that the baseline hazard does not vary 
across precision farming technologies. Another commonly used survival 
model is a frailty model, the details of which are presented in Appendix 
A.2. 

2.1. Individual heterogeneity 

Individual heterogeneity refers to a condition where some farmers 
adopt more PF technologies than other farmers for unknown or un-
measurable reasons. For instance, Fig. 1 shows the number of cotton 
farmers adopting different numbers of PF technologies. The figure is 
based on the data used in the present study. The figure shows that 1,533 
cotton producers did not adopt any PF technology. In contrast, it shows 
that 225 farmers adopted only one PF technology, 97 farmers adopted 
two PF technologies, and 55 farmers adopted three PF technologies. A 
smaller number of farmers adopted four or more PF technologies—24 
farmers adopted four PF technologies, nine farmers adopted five PF 
technologies, and four farmers adopted six PF technologies. Interest-
ingly, one farmer adopted 7–10 PF technologies. No farmers adopted all 
eleven PF technologies. Thus, the above analysis shows heterogeneity in 
the adoption of PF technologies. 

2.2. Event dependence 

Event dependence refers to a condition where the probability that a 
PF technology is adopted is related to whether another PF technology 
was adopted earlier. Adoption and non-adoption of PF technologies is a 
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Fig. 1. The number of PF technologies adopted by cotton farmers in the 
United States. 
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binary variable, so Pearson’s correlation coefficient is not an appro-
priate indicator to check the dependence between adoptions of one 
precision farming to other PF technologies. Kendall’s tau (τ) is a suitable 
method to measure dependence. Let (X1,X2) and (Y1,Y2) be indepen-
dent random pairs from a continuous bivariate pdf F(x1, x2)

τ = P[(X1 − Y1)(X2 − Y2) > 0 ] − P[(X1 − Y1)(X2 − Y2) < 0 ] (1) 

If (X1 − Y1)(X2 − Y2) > 0, then (X1,X2) and (Y1,Y2) are concordant 
pairs. If(X1 − Y1)(X2 − Y2) < 0, then (X1,X2) and (Y1,Y2) are discordant 
pairs. A nonparametric estimate of Kendall’s tau is used to determine the 
dependence of PF technologies: 

τ̂ =
(C − D)

n(n − 1)/2
. (2)  

where C is the number of concordant pairs, D is the number of discordant 
pairs, and n represents the sample size. Table 1 shows the estimated 
Kendall’s tau correlation between adoptions of different PF technologies 
used by US cotton producers. PF technologies (PF1 to PF11) are pro-
vided in a sequential order consistent with Fig. 2. Many of Kendall’s tau 
correlation coefficient values are significant, indicating event depen-
dence among PF technologies; therefore, there is the need to address 
event dependence in our model. 

Parameters and standard errors estimated by the CPHM are incon-
sistent and biased when heterogeneity among farmers and event (PF 
technology adoption) dependence2 in the presence of different PF 
technologies. Some variance-corrected models (Box-Steffensmeier and 
Boef, 2006, Box-Steffensmeier et al., 2007) address this problem. 
Variance-corrected models adjust event dependence and heterogeneity 
by adjusting the variance–covariance matrix. However, Box-Steffen-
smeier et al. (2007) show that variance-corrected models perform poorly 
in the presence of heterogeneity and event dependence. The authors 
suggest using the conditional frailty model as an alternative method 
because it is more efficient and consistent than other variance-corrected 
models. 

Heterogeneity and event dependence are not the only problems in 
the duration model estimation. Another factor is duration dependence 
(Frederiksen et al., 2007). The current probability of adopting a PF 
technology might depend not only on whether the cotton farmer has not 
adopted PF technology in the last period but also on how long they have 
not adopted the PF technology. That is, the length of past non-adoption 
of PF technology might be an essential determinant of the current 
likelihood of adoption in addition to the last period’s realization. 
Frederiksen et al. (2007) address the duration dependence issue using a 
duration dependence parameter. Given the conditional frailty model is 
estimated on gap time, it easily handles the duration dependence. The 
probability of adopting PF technology in a region3 might be higher or 
lower than in the other areas—group-specific effect. The group-specific 
impact can be solved by including a regional dummy variable in the 
conditional frailty model. 

2.3. Model and estimator 

We analyze the duration for adopting PF technologies in terms of the 
adoption hazard, representing the instantaneous adoption rate of PF 
technologies by US cotton farmers. We define some terminology related 
to survival analysis relevant to the present study (see Appendix A.3). 
Fig. 1 and Table 1 show that the conditional frailty model captures 

heterogeneity across individuals and event dependence via a random 
effect. The model is formulated in gap time so that parameter estimates 
can be interpreted as the probability of adopting a technology given that 
the PF technology was not adopted in the previous period. Let’s define 
the adoption hazard (likelihood of adopting) of a particular technology k 
by an individual i belonging to the group j ishijk. Using the method 
suggested by Box-Steffensmeier et al. (2007) and considering the group- 
specific effect offered by Honoré and Hu (2010) and Frederiksen et al. 
(2007), the conditional frailty model can be presented as: 

hijk(t) = h0k(t − tk− 1)exp
(
Xijkβ + αj + ωi

)
(3)  

where h0k is the baseline hazard rate that varies by the number of pre-
cision agricultural practices adopted by a cotton producer i, (t − tk− 1)

represents the likelihood of adopting kth practice since the adoption of 
(k − 1)th practice, Xijk is a matrix of explanatory variables, β represents 
vector parameters, and αj represents the group-specific (group = j) ef-
fects, and ωi is the random effects or frailties. This model addresses 
duration dependence and group-specific effects and includes time- 
varying variables. Parameters β are estimated by maximizing the 
following partial likelihood function 

L(β) =
∏n

i=1

∏K

k=1

(
exp
(
Xijkβ + αj + ωi

)

∑n
i=1
∑K

k=1Yijkexp
(
Xijkβ + αj + ωi

)

)δijk

(4)  

where δ is a censoring variable equal to 1 if observed and 0 if censored, 
Yijk is an at-risk indicator equal to 1 when a farmer is likely to adopt 
current PF technology k and 0 otherwise, and K represents the total 
number of PF technologies. The above equation allows for estimating 
fixed and random effects separately from the survival function (Cox and 
Oakes, 1984). 

2.4. Empirical simulation 

Box–Steffensmeier and Boef (2006) use theoretical simulations to 
show that the conditional frailty model performs better than other 
duration models. This study extends Box–Steffensmeier and Boef’s 
model by using time-varying independent variables and group hetero-
geneity, as suggested by Frederiksen et al. (2007) and Honoré and Hu 
(2010). Recall that we are interested in empirical simulations to identify 
the appropriate model that best fits the data. In this study, we selected 
eight independent variables to generate the duration variable for 
simulation purposes. The data was created by drawing the time to an 
individual i’s kth event tijk adoption, using an exponential distribution 
with rate hijk(t) and is expressed as: 

hijk(t) = h0k(t)exp
(
Xijkβ + αj + ωi

)
(5)  

where h0k is the baseline hazard rate which depends on k andt; αj a 
group-specific effect; ωiis a random effect that allows for heterogeneity; 
X is a matrix of the independent variables from our model, and β is a 
vector of parameters corresponding to the independent variables. The 
variance of ωi(σ2

ω)is set to 0.001 in case of no observed heterogeneity 
and σ2

ω = 10 to account for heterogeneity in the data. The larger vari-
ance represents more significant heterogeneity and results in a higher 
correlation among event times. The event dependence is created by 
setting h0k = kh0. Also, setting parameter value β = 1, the baseline 
hazard h0 = 1 and the maximum number of the event is set to11 (recall 
that a maximum of 11 component PF technologies is available for cotton 
farmers). The data is generated with 1,000 observations following Eq. 
(5) and estimate three variances-corrected models (Andersen-Gill, con-
ditional elapsed time, and conditional gap time), a shared frailty model, 
and the conditional frailty model. The conditional frailty model uses a 

2 Some individual farmers or group of farmers might have higher or lower 
adoption rate of precision technology adoption than other farmers due to un-
known, unmeasured or unmeasurable effects. See details in Box-Steffensmeier 
et al. (2007).  

3 Frederiksen et al. (2007) suggested that group could be observed by 
focusing on geographical location, by household, by employer in empirical 
setting, so we chose region as our group specific effects. 
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random gamma effect.4 The simulation is replicated 100 times. For 
evaluation, we calculated the root mean square error (RMSE) for each 
model using the following expression: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1

(
β̂i − 1

)2
.

√

(6) 

In Eq. (6), N is the number of simulations. The R-software and the 
survival package was used for the model simulation. 

Following Box–Steffensmeier and Boef (2006), we compare five 

different duration models in empirical simulation: shared frailty, con-
ditional frailty, Anderson-Gill conditional gap, and conditional elapsed. 
The result of the simulation is shown in Table 2. Results show that pa-
rameters estimated from the conditional frailty model are closer to the 
real parameter value (β = 1) for all dependent variables. Other variance- 
corrected models result in parameter estimates that are much smaller 
than the true parameter values. In contrast, the shared frailty model 
result gives much higher parameter estimates than the true parameter 
values. For the conditional frailty model, the RMSE is very low, indi-
cating that the model performs very well, and the RMSE is smaller 
compared to the RMSE from the other models. A density plot of the 
estimated parameters of a variable (say farm income) is shown in Fig. 4. 
This density plot is calculated from the 100 estimated coefficients from 
the empirical simulation for each model. Fig. 4 also shows that the 
conditional frailty model has an average mean value closer to the true 
parameter. Thus, the conditional frailty model performs better under 
heterogeneity and event dependence conditions than the other two 
models. Hence, the final model that fits the data can be expressed as: 

hijk(t) = h0k(t − tk− 1)exp
(
Xijkβ + αj + ωi

)
. (7) 

In the above equation, X represents the matrix of explanatory vari-
ables (see Table 3), αjrepresents the group-specific regions (Delta, 
Cornbelt, Appalachia, Southeast), and ω represents frailty or random 
effect. For the interpretation of the model, we are interested in the 
hazard ratio. Let h1(t,X,ω, α) represent a hazard for the first set of var-
iables defined as: 

h1(t,X,ω,α) = h0k(t − tk− 1)exp
(
X1,ijkβ+ αj +ωi

)
, (8) 

And h2(t,XN,ω, α) be the hazard for the second set of variables given 
by: 

h2(t,XN ,ω,α) = h0k(t − tk− 1)exp
(
XN,ijkβ+ αj +ωi

)
, (9)  

with XN = X + δi,δi = (0,...,1,...,0), then the hazard ratio (hr) is defined 
as: 

hr =
h2(t,XN ,ω,α)
h1(t, X,ω, α) = exp(βi) (10) 

The hazard ratio shows the chance of PF technology adoption in one 

Table 1 
Kendall’s tau coefficient of precision farming technology adoptions by US cotton producers.   

PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 

PF1 0.117           
PF2 0.027 0.061           

(0.00)           
PF3 0.039 0.019 0.311          

(0.00) (0.01)          
PF4 0.026 0.016 0.039 0.281         

(0.01) (0.02) (0.01)         
PF5 0.011 0.006 0.022 0.067 0.144        

(0.09) (0.25) (0.04) (0.00)        
PF6 0.012 0.006 0.035 0.059 0.067 0.135       

(0.07) (0.20) (0.00) (0.00) (0.00)       
PF7 0.003 0.004 0.002 0.009 0.002 0.007 0.041      

(0.46) (0.12) (0.68) (0.12) (0.62) (0.05)      
PF8 0.012 0.004 0.032 0.023 0.017 0.017 0.009 0.051     

(0.00) (0.21) (0.00) (0.00) (0.00) (0.00) (0.00)     
PF9 0.014 0.004 0.015 0.021 0.008 0.019 0.005 0.010 0.031    

(0.00) (0.06) (0.00) (0.00) (0.02) (0.00) (0.01) (0.00)    
PF10 0.004 − 0.001 0.007 0.013 0.009 0.009 0.000 0.015 0.005 0.016   

(0.05) (0.76) (0.04) (0.00) (0.00) (0.00) (0.81) (0.00) (0.00)   
PF11 0.043 0.008 0.034 0.030 0.016 0.026 0.004 0.014 0.020 0.010 0.065  

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.15) (0.00) (0.00) (0.00)  

Note: The precision farming technologies are: Yield monitor-with GPS (PF1), Yield monitor-no GPS (PF2), Soil sampling-grid (PF3): Soil sampling-zone (PF4) Aerial 
photos (PF5), Satellite images (PF6), Soil survey maps (PF7), Handheld GPS/PDA (PF8), COTMAN plant mapping (PF9), Digitized mapping (PF10), and Electrical 
conductivity (PF11). The values in parenthesis are p-values. The bolded value in parentheses indicates a Kendell’s tau correlation coefficient is significant. Kendall’s 
tau coefficient (Kendell rank correlation) is a nonparametric measure of the relationship between PFi and PFj where i ∕= j. Kendall’s tau coefficients are calculated based 
on concordant and discordant pairs. 
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Fig. 2. The number of cotton producers adopting each PF technology in the US.  

4 Note that these models differ from Box-Steffensmeier et al. (2007) as we 
incorporate time-varying covariates and group heterogeneity. 
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group compared to the other group. If two groups are separated by only 
treatment vs. no treatment, exp(β) with β being the treatment coefficient 
results in a hazard ratio. 

3. Data 

The study uses the 2009 Southern Cotton Precision Farming Survey 
data collected from farmers in twelve US states (Alabama, Arkansas, 
Florida, Georgia, Louisiana, Missouri, Mississippi, North Carolina, South 
Carolina, Tennessee, Texas, and Virginia) (see Fig. 3). A survey imple-
mentation method suggested by Dillman (1978) was used to collect in-
formation about precision farming technologies adoption. The mailing 
list of potential cotton farmers for the 2007–08 marketing year was 
obtained from the Cotton Board in Memphis, Tennessee (Mooney et al., 
2010). The survey was mailed in February of 2009. Of the 14,089 
questionnaires sent, 306 were returned undeliverable, 204 respondents 
were no longer cotton farmers, and 1,692 respondents provided useful 
information for a response rate of 12.5 percent, which is considered a 
valid response rate for conducting this type of analysis. 

These data were coded in an extended format by farmers’ ID and 
technologies, which is required to estimate the conditional frailty model. 
We observe whether the cotton producer adopted a given technology in 

Table 2 
Results from empirical simulations.  

Model Statistics Age Education Profitable Farm income Computer Syield Farm size Land tenure 

Conditional frailty β̂  0.979 0.957 0.981 0.996 1.005 1.107 0.947 0.974 

SD 0.383 0.551 0.153 0.153 0.094 0.506 0.446 0.153 
RMSE 0.380 0.547 0.153 0.151 0.093 0.512 0.445 0.154 

Shared frailty β̂  2.097 1.676 2.150 2.112 2.097 2.141 1.720 1.927 

SD 1.127 1.674 0.456 0.608 0.289 1.305 1.279 0.423 
RMSE 1.565 1.790 1.235 1.264 1.134 1.723 1.457 1.017 

Andersen-Gill β̂  0.674 0.741 0.654 0.685 0.691 0.790 0.776 0.725 

SD 0.271 0.368 0.091 0.110 0.073 0.464 0.351 0.113 
RMSE 0.423 0.447 0.358 0.333 0.317 0.505 0.413 0.297 

Conditional gap β̂  0.611 0.653 0.605 0.638 0.636 0.739 0.686 0.657 

SD 0.235 0.327 0.079 0.100 0.059 0.384 0.302 0.097 
RMSE 0.453 0.475 0.403 0.376 0.369 0.460 0.434 0.357 

Conditional elapsed β̂  0.269 0.284 0.289 0.305 0.298 0.366 0.300 0.297 

SD 0.128 0.189 0.051 0.065 0.036 0.220 0.169 0.057 
RMSE 0.742 0.740 0.713 0.698 0.703 0.671 0.719 0.705 

Note: Variable definitions are given in Table 3. RMSE stands for root mean square error. 

Table 3 
Variable definition and summary statistics.  

Variable Variable definition Average SD Min Max 

Tech Technologies 6.00 3.16 1.00 11.00 
Start Year when technology started 1987.88 11.41 1957.00 2004.00 
Tadopt Year when technology adopted 2006.50  1957.00 2007.00 
Event =1 if technology adopted, 0 otherwise 0.06 0.24 0.00 1.00 
Age Age of farm operator (years) 51.35 11.47 11.00 84.00 
Education Formal education of farm operator (years) 14.77 2.13 5.00 23.00 
Farm size Cotton acreage in 2007 (1,000 s acres) 1.29 1.40 0.01 16.00 
Farm income Percentage income from farm 73.85 27.61 0.00 100.00 
Land tenure Owned acres divided by owned acres plus rented acres 34.55 35.14 0.00 108.14 
Computer =1 if farmer uses computer for farm management 0.65  0.00 1.00 
Farming information =1 if the farm uses university publication to obtain precision farming information 0.42  0.00 1.00 
Important =1 if the farm think PF is important for future 0.90  0.00 1.00 
Cons easement =1 if the farm currently have conservation easement 0.17  0.00 1.00 
Syield Spatial yield variability 37.59 24.99 0.00 296.00 
Livestock =1 if farm own livestock, 0 otherwise 0.32  0.00 1.00 
Delta =1 if a farm is located in Delta region (Louisiana, Arkansas, Mississippi), 0 otherwise 0.16  0.00 1.00 
Cornbelt =1 if a farm is located in Corn belt region (Missouri), 0 otherwise 0.02  0.00 1.00 
Appalachia = 1 if a farm is located in Appalachia region (Tennessee, North Carolina, Virginia), 0 otherwise 0.21  0.00 1.00 
Southeast =1 if a farm is located in Southeast region (South Carolina, Alabama, Georgia, Florida), 0 otherwise 0.19  0.00 1.00 
Southplain =1 if a farm is located in Southplain region (Texas), 0 otherwise 0.42  0.00 1.00 

Source: 2009 Southern Cotton Precision Farming Survey. 

Fig. 3. Precision farming survey states with division of regions. U.S. states and 
regions are defined as: Delta region (LA = Louisiana, AR = Arkansas, MS =
Mississippi), Corn belt region (MO = Missouri), Appalachia region (TN =
Tennessee, NC = North Carolina, VA = Virginia), Southeast region (SC = South 
Carolina, AL = Alabama, GA = Georgia, FL = Florida), Southplain region (TX 
= Texas). 
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a particular year by considering a year as a unit of technology adoption 
duration. Each producer can adopt one or more than one technology as a 
case of multiple technology adoptions. There are 474 events (total 
precision farming technologies adopted by farmers), with each farmer 
adopting an average of 0.70 technologies. Farmers have adopted 11 
different PF technologies. Cotton producers adopting each PF technol-
ogy are given in Fig. 2. This figure shows that the soil sampling grid and 
soil sampling zone are the two most common PF technologies adopted 
by cotton producers. 

The variables used to explain the adoption pattern are based on 
human capital theory, farm and production characteristics, and other 
variables used in the technology adoption literature. Education and 
farming experience are measures of human capital that reflect the ability 
to innovate and adopt new ideas. The human capital variable has a 
positive influence on adoption hazard. Since there is no study done on 
duration analysis in cotton PF, we expect that the variables used on 
adoption decisions also have a similar effect on PF duration. Previous 
studies (Gargiulo et al., 2018; Paustian and Theuvsen, 2017; Paxton 
et al., 2011; Roberts et al., 2004; Tamirat et al., 2018; Velandia et al., 
2010; Walton et al., 2010) have shown that farm size, age, income, and 
farming experience are widely accepted variables that affect precision 
technology adoption decisions. Most of these studies have shown that 
the operator’s age has a negative influence on technology adoption 
(Soule et al., 2000). Young and educated farmers are willing to innovate 
and adopt new technologies that reduce the time spent on farming 
(Mishra et al., 2002). Therefore, education is expected to have a positive 
influence on PF technology adoption hazard because farmers with those 
attributes are exposed to more ideas and efficiently use different infor-
mation sources (Caswell et al., 2001). 

Farm characteristics are essential variables for understanding a 
farmer’s decision to adopt PF technology (Prokopy et al., 2008). As with 
other studies, this study uses financial and location variables for the 
duration to adopt precision agriculture technology. University publica-
tions are helpful to cotton producers in obtaining precision farming in-
formation. Extension services convey information about university 
research and publication that help farmers make an informed decision to 
enhance profitability (Hall et al., 2003). Producers tend to use multiple 
sources of information to increase their knowledge of precision agri-
culture (Velandia et al., 2010). Therefore, information is expected to be 
positively related to the adoption likelihood of farming technology 

(Gupta et al., 2020; Buchkin and Kerret, 2020). Paxton et al. (2011) find 
that spatial yield is one of the critical factors on the PF adoption in 
cotton. In their study, spatial yield variability is defined as: 

FSV = 0.5
(
Yieldlow − Yieldavg

)2
+ 0.5

(
Yieldhigh − Yieldavg

)2 (11)  

where the coefficient of the field spatial yield variability: 

(CVFSV) = 100 × FSV0.5
i

/
Yieldavg 

Farmers with larger farms are more likely to believe they will 
observe positive externalities associated with precision farming (Larkin 
et al., 2005). Also, Larkin et al. (2005) find that farmers who found PF to 
be profitable or who believed input (e.g., fertilizer and pesticides) 
reduction was important had a higher probability of adopting PF tech-
nologies. Farmers with larger farms and higher than average county 
yields were more likely to adopt precision technology (Banerjee et al., 
2008). Computers are essential to keep financial records and to find 
information about the use of precision agriculture. It has been found that 
farmers who kept computerized financial records were more likely to be 
financially successful (Mishra et al., 1999). Table 3 provides definitions 
and summary statistics of the variables used in the empirical model. 
Since some observations in the original data were missing, only 1,650 
completed surveys were deemed useable in our analysis. PF technology 
in cotton farming was first used in 1957. Summary statistics show that 
the average age of cotton farmers in the twelve states is 51 years, with 
15 years of schooling. Seventy-four percent of household income comes 
from cotton farming. Cotton farmers own 34% of the total farming land. 
Sixty-five percent of cotton producers use computers for their farm 
management. 

A study by Zhou et al. (2015) using more recent data than ours has 
found that 73.5% of US cotton farmers have adopted one or more pre-
cision agricultural technologies. This adoption proportion is about 10% 
more than what we have found in our survey of similar technologies 
adopted by cotton farmers in the U.S. Zhou et al. (2015) find that geo- 
referenced soil sampling grid, yield monitor with GPS, soil survey 
maps, and aerial photos are the top four precision farming technologies 
adopted by US cotton farmers. 

4. Results and discussion 

The empirical simulation (see Fig. 4 and Table 2) shows that the 
conditional frailty model performs better under heterogeneity and 
correlated events than other models. The results are consistent with the 
findings of Box-Steffensmeier and Boef (2006) and Box-Steffensmeier 
et al. (2007). A likelihood ratio test was used to determine the hetero-
geneity among farmers, determined by the variance component of the 
random effect. The likelihood ratio test shows that the variance 
component is significantly different from zero at the 5% level of sig-
nificance. The values of random effects for the conditional frailty is 7.90 
(Table 4), and the likelihood ratio test value for the variance component 
is 607.76 and is highly significant. This result justifies the presence of 
the random effect in the model. A Weibull probability plot of adoption 
for each PF technology by cotton producers from the conditional frailty 
model is given in Fig. 5. Fig. 5 suggests that the probability of PF 
technology adoption is different by event number. Correlated events are 
found to be present since the likelihood of PF technologies for each 
stratum is distinct. 

Table 4 provides the parameter estimates and hazard ratios obtained 
from the conditional frailty models. Age has a negative and significant 
effect on the hazard of the adoption of technology. An additional year in 
the age of cotton producer reduces the estimated hazard of technology 
adoption by 5.0%. Our finding is consistent with our expectation that 
older farmers are less likely to adopt new technologies. A plausible 
explanation is that older farmers have lower expectations from the ex-
pected cumulative returns from cotton farming in the future. This result 
is consistent with Roberts et al. (2004), who found that older farmers do 
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Fig. 4. Densities of parameter β̂ estimated under heterogeneity and event 
dependence in different survival models. Note the true parameter value is β =
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not adopt variable rate technology than younger farmers. The significant 
positive effect of farm income on the hazard of technology adoption 
indicates that for each $1000 increase in farm income increases, the 
probability of adopting PF technology by about 1.6%. Higher farm 

income affords farmers with the cash that is needed to adopt new PF 
technologies. Thus, farmers with higher farm incomes do not have to 
wait a long time to acquire new PF technologies. Our finding is consis-
tent with Isgin et al. (2008), who reported a positive effect of income 
(lack of indebtedness) on adopting PF technology in Ohio, United States. 
Results in Table 4 suggest that cotton producers, who own a higher 
percentage of the land they farm, are more likely to adopt PF technol-
ogies. A 1% increase in land tenure increases the likelihood of adopting 
PF technologies by 1.9%. Our finding is consistent with Isgin et al. 
(2008) and Roberts et al. (2004) have also found that an increase in the 
proportion of ownership of land compared to the total operated area 
increases the adoption of PF technologies. 

Table 4 reveals that a cotton producer who uses a computer for farm 
management is about 1.34 times more likely to adopt PF technologies 
than their counterparts. Our result is consistent with Mishra et al. 
(1999), who found that computer use in farming has a positive and 
significant impact on farm earnings and more likely to adopt new 
technologies. Table 4 shows that cotton producers using PF technology 
information (university publication, journal articles, and other sources) 
are 3.41 times more likely to adopt PF technology than their counter-
parts. Our finding is consistent with Larson et al. (2008). They argue that 
farmers who perceive extension service as providing pertinent infor-
mation related to PF technology are more likely to adopt the technology. 

Cotton producers who think that PF will be important in the future 
are likely to adopt PF. The result in Table 4 shows that cotton producers 
who think PF is essential in the future are 8.83 times more likely to adopt 
PF technologies than their counterparts. Further, we found similar re-
sults for cotton producers who own livestock. The probability of adop-
tion of PF is 3.55 times greater when compared to those who do not own 
livestock. The above results are consistent with findings reported in Tey 
and Brindal (2012). Regional dummy variables in Table 4 are signifi-
cant, which implies that the group-specific effect is present in our data. 
Thus, the farm’s geographical location is also an essential factor 
affecting the adoption hazard of PF in the Southern US states. Results 
show that farms located in the Delta, Corn Belt, Appalachia, and 
Southeast regions are more likely to adopt PF technologies than farms 
located in the Southern Plains region. The study finds that farms located 
in the Delta region have the highest adoption effects (58.76). Further, 
the results show that farms situated in the Corn Belt region have the 
second-highest adoption effect (30.09) for the likelihood of adopting PF 
technologies. 

5. Conclusions and policy implications 

The study conducted empirical simulations to identify an appro-
priate model that can address event dependence and heterogeneity 
associated with adopting multiple-precision farming technologies by US 
cotton farmers. Variance corrected models resulted in parameter esti-
mates much smaller than the true parameter values. In contrast, the 
shared frailty model result gave much higher parameter estimates than 
the true parameter value. For the conditional frailty model, RMSE was 
smaller compared to the RMSE from the other models. The conditional 
frailty model has an average mean value closer to the true parameter. 
Thus, the conditional frailty model performed better under heteroge-
neity and event dependence conditions than the other models. These 
findings were consistent with Box-Steffensmeier and Boef (2006). 
Therefore, we estimated the conditional frailty model to estimate the 
empirical model to understand the waiting time to adopt precision 
farming practices by cotton farmers in the US. 

The findings from this study show the existence of event dependency 
among PF technologies. Results reveal that farmers observe a waiting 
time or duration to adopt PF technologies. Further, the time taken to 
adopt PF technologies depends on the individual farmer and farm- 
specific characteristics of cotton farmers in the US. The duration 
model was used to measure the time taken by a cotton producer to adopt 
a PF technology given the technology is available. The adoption hazard 

Table 4 
Parameter estimates and hazard ratios obtained from the conditional frailty 
models.  

Variables Coefficients Hazard Ratio 

Age − 0.0499 0.951  
(0.00)  

Education 0.068 1.071  
(0.64)  

Farm size 0.227 1.255  
(0.05)  

Farm income 0.016 1.016  
(0.06)  

Land tenure 0.019 1.019  
(0.02)  

Computer 0.865 2.376  
(0.08)  

Farming information 1.485 4.413  
(0.00)  

Important 2.286 9.836  
(0.04)  

Cons Easement 0.169 1.184  
(0.83)  

Syield − 0.007 0.993  
(0.53)  

Livestock 1.516 4.552  
(0.00)  

Delta 4.072 58.671  
(0.00)  

Cornbelt 3.404 30.094  
(0.03)  

Appalachia 2.030 7.613  
(0.00)  

Southeast 1.889 6.614  
(0.00)  

Random effects (θ) 7.90 
N  8016 
Number of failures  453.00 
Likelihood ratio for theta 607.76 
I-likelihood  − 2272.75 
Log likelihood for model − 1580.78 
Wald χ2(15,457)   1465.00  
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of PF technologies is negatively correlated with age. Thus, younger 
cotton producers are more likely to adopt PF faster. Farmers with large 
acreage, higher land ownership, higher farming income, and use of in-
formation technology, such as the use of computers for farm manage-
ment, are more likely to adopt PF technology. Further, cotton producers 
who think that PF will be valuable in the near future and use farming- 
related information from university publication are more likely to 
adopt PF shortly after a new PF technology is available. Finally, cotton 
producers located in the Delta region have the highest probability of 
adopting PF technology than farms located in other areas. 

We found that only a few cotton farmers have adopted yield monitors 
compared to the US national average of 40–50 percent adopting the 
same technology by corn and soybean producers. At least in our case, 
Cotton farmers seem to equally adopt soil mapping and yield monitoring 
technology compared to other grain farmers. Yield monitoring and soil 
mapping are two essential technologies for the adoption of precision 
farming technologies. Given the almost equal adoption of the above 
technologies by cotton farmers, tandem promotion of PF technologies 
and variable rate technology (VRT) is warranted. Policymakers could 
design policies to increase the adoption of PF technologies that target 
farmers who say precision farming is essential, those using information 
management technology like computers in agriculture and farm man-
agement, and those using university publication in the farm decision- 
making process. Readers should be cautioned that 92% of cotton 
farmers did not adopt any PF technology. Therefore, this study’s results 
may have been affected by fewer observations of adopters of PF tech-
nologies. Future studies should use a larger-scale survey to collect in-
formation on more PF related technologies. 

Many of the PF technologies require technical sophistication to 
operate. Publications from university research and extension can 

provide detailed workings of the technology. Additionally, extension 
personnel can help to train farmers on how to manage the technology 
appropriately. Another way to increase adoption is to provide subsidized 
capital to facilitate the adoption process. This is because the equipment 
used in precision agriculture technology is expensive. Better data on 
environmental benefits from precision agriculture and proper docu-
mentation of this information may convince farmers to adopt the tech-
nology. Of course, these recommendations should be carefully evaluated 
before developing a final policy to increase the adoption rate of preci-
sion farming technologies in cotton production. 
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Appendix A 

A.1. Cox proportion hazard model 

In a Cox Proportion Hazard Model (CPHM), baseline hazard can be of any functional form, noninformative censoring should be followed, and a 
proportional hazard assumption should hold. The number of cotton producers is stratified according to the number of individual precision tech-
nologies they have adopted in light of the above assumptions. Suppose there are k different types of technologies that can be adopted. The hazard 
(adoption) function is obtained by multiplying the baseline hazard function (h0k) and some functional form of covariates. The CPHM is expressed as: 

hik(t) = h0k(t)exp(Xikβ). (A1) 

Here h0k is the baseline adoption rate, varies according to events; X is the matrix of independent variables, which may have time varying variables, 
and β is a vector of parameter estimates. Under the assumption of no tie among event times, parameters are estimated using a partial likelihood 
function suggested by Cox (1972) and given by: 

L(β) =
∏n

i

∏K

k=1

(
(exp(Xikβ)

∑n
i
∑K

k=1Yikexp(Xikβ)

)δik

. (A2) 

Here, r indexes Di, which is the set of di tied events for the ith risk set. Since the parameter estimates are obtained from the maximum likelihood 
estimation, the variance is the Cramer-Rao lower bound, which is the inverse of second the derivative of the likelihood function (Hessian matrix) and 
equal to the following expression. 

Var(β̂) = −

[
d2logL(β)

dβ2

]− 1

β̂
(A3)  

A.2. Frailty model 

The variance corrected CPHM cannot address the heterogeneity effect on the estimates and remains inconsistent (Kelly and Lim, 2000). The frailty 
model incorporates heterogeneity into the model estimator by treating the frailty term randomly drawn from a known parametric distribution. Then, 
the hazard function and likelihood function to estimate the shared model are given below: 

hik(t) = h0k(t)exp(Xikβ+ωi) (A4) 

Here, wi is the vector of unknown random effects or frailty for the ith individual and kth represents the number of possible technology combinations 
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adopted by each cotton producers. The frailty is assumed to follow a gamma distribution. So, the heterogeneity in the model is estimated by the 
variance of error termθ( = exp(wi)). Then, the parameters are estimated by maximizing the following likelihood function: 

L(β) =
∏n

i=1

(
exp(Xik + wi)
∑n

i=1expXik + wi

)

(A5) 

It is important to highlight here that this model does not simultaneously address the correlation between event dependence and individual 
heterogeneity. 

A.3. Terminologies 

Below, we define some terminology related to survival analysis as these are relevant to our study. 
1. Cumulative Distribution Function,F(t): The cumulative distribution function of T, F(T) = P(T ≤ t) gives the probability that technology will be 

adopted before time t. 
2. Probability Density Function, f(t): The probability density function for a continuous random variable T is the derivative of F(t)with respect to t :

f(t) =
dF(t)

dt 
3. Event: An event is the adoption of technology at timet. 
4. Non-adoption (Survival), S(t): The non-adoption function is the probability that the adoption of precision farming occurs after t, and given by 

S(t) = P(T ≥ t) = 1 − F(t) (A6) 

Here, the adoption (hazard) function,h(t), is proportional to the probability of adoption of technology in the interval [t, t+δ] given that it has not 
been adopted up to time t: 

h(t) = f (t)/S(t) (A7)  

and 

δh(t)≐P(t < T ≤ t + δ|T > t).
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