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a b s t r a c t

Smart Farming is the new term in the agriculture sector, aiming to transform the traditional techniques
to innovative solutions based on Information Communication Technologies (ICT). Concretely, technolo-
gies like Unmanned Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs), Image Processing,
Machine Learning, Big Data, Cloud Computing, and Wireless Sensor Networks (WSNs), are expected to
bring significant changes in this area. Expected benefits are the increase in production, the decrease
in cost by reducing the inputs needed such as fuel, fertilizer and pesticides, the reduction in labor
efforts, and finally improvement in the quality of the final products. Such innovative methods are
crucial in recent days, due to the exponential increase of the global population, the importance of
producing healthier products grown with as much fewer pesticides, where public opinion of European
citizens is sensitized. Moreover, due to the globalization of the world economy, European countries
face the low cost of production of other low-income countries. In this vein, Europe tries to evolve its
agriculture domain using technology, aiming at the sustainability of its agricultural sector. Although
many surveys exist, most of them tackle in a specific scientific area of Smart Farming. An overview
of Smart Farming covering all the involved technologies and providing an extensive reference of good
practices around Europe is essential. Our expectation from our work is to become a good reference
for researchers and help them with their future work. This paper aims to provide a comprehensive
reference for European research efforts in Smart Farming and is two-fold. First, we present the research
efforts from researchers in Smart Farming, who apply innovative technology trends in various crops
around Europe. Second, we provide and analyze the most significant projects in Europe in the area of
Smart Farming.
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1. Introduction

Agriculture plays a vital role throughout human history from
ncient years since now, as it is essential for the survival of
umans species. During this period, it has seen many evolutions,
rom the domestication of animals and plants a few thousands
f years ago, to the systematic use of crop rotations and other
dvancements in farming practices a few hundred years ago.
uman-made fertilizers and pesticides were the last innovation a
ew decades ago. Nowadays, we are experiencing a new evolution
n the agriculture sector, called Smart Farming [1], which is based
n Information and Communications Technologies (ICT). Smart
arming is aiming to increase productivity and improving the
uality of the final product while reducing cost production. To
chieve that, a range of recent technologies are used, including
nmanned Aerial Vehicles (UAVs) [2], Unmanned Ground Vehi-
les (UGVs) [3,4], Image Processing, Machine Learning, Big Data,
loud Computing, and Wireless Sensor Networks (WSNs).
Smart Farming is the new term in the agriculture domain

hich promises to bring revolution in food management and pro-
uction. It can be considered that Smart Farming is the evolution
f the term Precision Agriculture [5]. Moreover, an equivalent
erm in literature to Smart Farming is Smart Agriculture. In this
anuscript, we will use the term Smart Farming.
The authors Samir KC, and Wolfgang Lutz discussed the worst

cenario [6] that predicts that the world population will reach
he amount of 12.6 billion in 2100, which will result in a grow-
ng demand for food production. The global history has shown
hat humanity was able to overcome such increases in food
emand [7], mainly based on the adoption of new technologies
nabling significant increases in food production per given arable
and [8]. Thus, the future in agriculture sustainability comes prob-
bly through recent technologies in ICT.
In addition, fertilizer and pesticides have been used widely

uring the last decades, which yields significant worries for the
inal quality of the products and their impact on the health
f the public, as well as for the environmental impact [9,10].
recision agriculture was intending to reduce chemical inputs
y precisely using them in specific areas where and when there
ere needed [11,12]. Smart Farming, the evolution of Precision
griculture with recent technologies, aiming to reduce them even

ore.

2

Furthermore, water management in agriculture sector is of
paramount importance and should be used wisely in the fu-
ture [13] in order to protect remaining resources from disap-
pearing. Thus, water management has been presented in recent
years as one of the main applications in Smart Farming, and
many research papers propose smart irrigation systems [14,15]
to reduce water consumption and the amount of wastewater.

Moreover, agriculture is the primary income of a high percent-
age of people around the world, as well as in many developing
countries is contributing a vast amount in their Gross Domain
Product (GDP) [16]. Furthermore, globalization of economy de-
mands low-cost production, which has a negative impact on
farmers in the developed countries. Thus, they have to find inno-
vative solutions to decrease cost production. The aforementioned
innovative ICT technologies can give the opportunity to farmers
and agronomists to take decisions at farm level depending on the
collected data from UAVs, satellites or wireless sensors, or operate
precisely at the plant level. Precision will also reduce the chemical
inputs like fertilizers and pesticides, and as a consequence, it will
reduce cost production and improve the quality of the products.
Moreover, UGVs will lessen the labor effort since they can work
without or with limited man intervention with accuracy and
efficiency.

Our work is motivated by the growing importance of Smart
Farming in European Union (EU), driven by the evolution of
recent technologies of computer science such as Unmanned Aerial
Vehicles (UAVs), Unmanned Ground Vehicles (UGVs), Image Pro-
cessing, Machine Learning, Big Data, Cloud Computing, and Wire-
less Sensor Networks (WSNs). The adoption of Smart Farming
will allow EU to boost its agricultural output whilst ensuring
the sustainability of the European agriculture sector. Under this
perspective, EU is supporting cutting-edge research and innova-
tion with many researchers around Europe working on innovative
projects with the technologies mentioned above, aiming to drive
agriculture to a new era. We are going through a period where
good practices are essential to be promoted, in order to set the
pillars for Smart Farming of the future.

Although there exist various surveys on Smart Farming tech-
nologies, most of them are focusing on specific areas of Smart
Farming. In [17] the authors P. Radoglou-Grammatikis et al. pro-
vides a detailed overview of Precision Agriculture and investigate
in detail 20 UAV applications for crop monitoring processes or
spraying tasks. G. Kakamoukas et al. [18] presenting an exten-
sive review of Flying Ad-hoc Networks (FANETs) routing proto-
cols, suitable for UAV deployment for six different applications
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n Smart Farming, namely Crop Scouting, Crop Surveying and
apping, Crop Insurance, Cultivation Planning and Management,
pplication of Chemicals, and Geofencing. In [19] E. Hamuda
t al. provides a survey of image processing techniques for plant
xtraction and segmentation in the field. The authors S. Wolfert
t al. discuss the state-of-the-art of Big Data applications in Smart
arming and identify the related socio-economic challenges [20].
he authors K. Liakos et al. present a comprehensive review of
esearch dedicated to applications of machine learning in agricul-
ural production systems [21]. Moreover, in [22] A. Kalimaris et al.
rovides a survey of Deep Learning research efforts applied in the
gricultural domain. In [23], the authors A. Lytos et al. presents
he state-of-the-art agriculture systems and big data architectures
oth in research and commercial status, aiming to bridge the
nowledge gap between agriculture systems and exploitation of
ig data.
Concentrated work in surveys on the state-of-the-art research

ork will help future researchers on their efforts. Our approach
s aiming to present Smart Farming from a spherical view and
how various aspects of its concept. In this paper, we are trying
o provide an extensive reference on related work of research
n Smart Farming around Europe. Besides, none of the existing
urveys are providing such a large number of relevant research
ork in European countries. The expectation for our work is to
ecome a good reference for future researchers involved with
mart Farming.
More specifically, the contribution of this paper is summarized

s follows:

• First, we are presenting the most valuable research efforts
in Smart Farming in Europe. We categorize all the related
research papers depending on the involved technologies. In
addition, we are indicating their efforts in field operations
on the applied types of crops.

• Furthermore, we provide a statistical analysis among the
referred papers based on the involved technologies, the
evaluated crop types, the field operations, and the countries
where evaluation take place.

• We are presenting and analyzing the European Projects,
that are relevant to Smart Farming. We are providing a
categorization depending on the involved technologies and
their operations in the field, as well as the crops species on
which they have been tested and evaluated.

• Moreover, we discuss, in brief, the projects mentioned
above, and provide a statistical analysis of the technology
trends in Smart Farming, based on the described projects.

The remaining of this paper is organized as follows: In Sec-
ion 2 we discuss the related technologies involved with Smart
arming such as Unmanned Aerial Vehicles (UAV), Unmanned
round Vehicles (UGV), and Wireless Sensor Networks. In Sec-
ion 3, we are analyzing the involved technologies from ICT
uch as Image Processing, Machine Learning, Big Data, and Cloud
omputing. In Section 4, we provide in brief the research ef-
orts in Smart Farming, which have been tested and evaluated
n crops around Europe. Section 5 is focused on the projects in
mart Farming funded in European countries. In Section 6, we
re presenting a summary of future research trends, and finally,
ection 7 concludes this survey paper.

. Related technologies

In this section, we are introducing the main technological
volutions involved with Smart Farming such as Unmanned Aerial
ehicles (UAVs), Unmanned Ground Vehicles (UGVs), and Wire-
ess Sensor Networks (WSN). We are analyzing and discussing
heir characteristics while providing the main potential benefits
rom their usage in the agriculture section as well as the recent
esearch trends in their area.
3

2.1. Unmanned Aerial Vehicles (UAVs)

The last years, there is a growing interest in inspecting the
health and monitoring the growth of large fields of crops with au-
tonomous techniques. The new technology trend in this domain
is Unmanned Aerial Vehicles (UAVs) aiming to offer multiple
applications in Smart Farming such as remote sensing, crop es-
timation, weed detection, water management, and spraying. In
more detail, UAVs’ main contribution in Smart Farming is remote
sensing [24] by providing the appropriate information through
captured images from visible, near-infrared, thermal spectrum
cameras or even from laser scanners. UAVs can also be used
in crop estimation where images acquired are used to evaluate
crop growth through a 3D reconstruction of the cultivation. More
specifically, programming techniques allow to create a 3D model
of the vegetation structure for precision study [25]. Moreover,
by applying several flights with a UAV within a seasonal pe-
riod, we can have a historical overview to inspect the growth
of vegetation [26]. Also, weed mapping [27] is another beneficial
operation in the field, which can reduce chemical inputs as well
as labor efforts from farmers. Furthermore, multispectral cam-
eras, as one of the primary equipment of UAVs, can be used in
water management techniques [28] where captured images can
provide information about the humidity of the cultivation. Finally,
spraying [29] is another operation where UAVs are tested on the
field, aiming to reduce inputs of pesticides by acting precisely
where and when it is needed.

UAVs seems to be the best solution since they are effective
in giving the farmer a bird’s eye view of his fields in a short
time, with low operational cost. In particular, UAVs allow him
to inspect with one flight many acres of crops in less than one
hour. Thus, he can get an overall estimation of potential problems
without wasting time by walking around the field. This fact allows
interfering precisely when and where there is a need for fertil-
izer or pesticides, thus reducing operational cost and producing
healthier products for consumers.

Alternative techniques for inspection of large fields of crops
are, manned airborne and satellite inspection, but the cost of
both of them are high, and they have not the flexibility of UAVs.
For example, different kind of sensors, imaging, or no-imaging
can be easily applied to a low-cost UAV, providing in a few
minutes various types of data. Following a predefined path to
cover an area, several hundred pictures can be captured to create
an overall image for the coverage of a field.

Numerous kinds of UAVs exist today, suitable for various
applications, from surveillance systems to disaster response mis-
sions. A comprehensive review of the classification of UAVs and
their potential applications are discussed by M. Hassanalian and
A. Abdelkefi [30]. Nowadays, in the agriculture domain, they are
mainly used only two types of UAVs, fixed wing and rotary wing.
Both of them have the advantages and disadvantages which are
presented in summary in Table 1. In particular, fixed wing UAVs
can cover large areas in a few minutes, but they lack in image
resolution comparing with rotary wing UAVs since they fly in
higher altitudes. In addition, they can operate with winds up to 45
km/h, and their flights can last more time since they consume less
power as they are taking advantage of their aerodynamic shape.
On the other hand, rotary wing UAVs can fly in low altitudes and
operate with accuracy, so they are suitable even for operations
like spraying.

Despite the freedom that a UAV can give to a farmer in their
work, there are many regulations in the countries worldwide [31]
which sets significant barriers to their development in the field.
They are aiming to reduce the possibilities of congestion with
other airspace users and the possible damage to people or prop-
erty on the ground. In addition, privacy concerns is another issue
on which regulations should be conformed to protect the private
life of people as well as to protect restricted areas like jails,
military areas, or industrial buildings.
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Table 1
Comparison between fixed wing and rotary wing UAVs.

Fixed Wing Rotary Wing

Speed High Low
Coverage Large Small
Resolution cm/inch per pixel mm per pixel
Take-off and landing area Large Small
Flight time High Low
Wind resistance High Low
2.2. Unmanned Ground Vehicles (UGV)

Recent evolution in robotics is aiming to participate in every
art of human activities in the next decades. In the agriculture
ection, Unmanned Ground Vehicles (UGVs) are making their first
teps [3,4], and they are promising to lessen the labor effort as
ell as to boost the accuracy of the operations in the field. Quite
few solutions already exist in the experimental stage, showing
hat UGVs can play a fundamental role in Smart Farming in the
ext decades. In order to become practical for use in everyday
ctivities in the field, researchers still have to resolve many issues.
uture UGVs should be cost-effective, operate precisely in an
nstructured agriculture farm while being inherently safe for
umans. In addition, they should increase the performance and
eliability of their operations while reducing their size.

An UGV can perform various tasks [32] in the field like seed-
ng [33,34], harvesting [35], weeding [36,37], spraying [38], prun-
ng [39], and crop monitoring [40]. Existing UGVs have been
ested on numerous crops including grapes, peppers, cucumbers,
omatoes, asparagus, sunflowers, sugar beet, and hazelnuts.

To provide operational abilities to a robotic system, we have
o equip it with various instruments, but the most important
quipment is a camera. Even an ordinary camera can be the eyes
f the UGV, as Computer Vision techniques give it the capability
o move autonomously around the field and perform the desired
asks, like seeding, harvesting, and distinguish the crops from the
eeds. Moreover, cameras in infrared light can be used to detect
he moisture of the leaves or potential diseases.

Furthermore, modern technologies in sensors are used to
quip UGVs with capabilities like soil moisture or pH measure-
ents. UGVs are also able to communicate with weather stations
nd be informed about the forecast or download data from
nowledge Management Systems and apply the corresponding
ctions in the fields. Finally, researchers aim to develop UGVs
hich can work in swarms or cooperate with UAVs [32,41] to
erform complex tasks.
Expected benefits from UGVs when they reach their poten-

ial are numerous. For example, they will bring a reduction of
abor effort, which will also result in a decrease in operational
ost. In addition, they will offer precise appliance of fertilizers
nd pesticides, which will also help in cost reduction, lessen
he environmental impact, and produce better products. Finally,
he small size of the UGVs comparing with the existing heavy
achinery will avoid the massive soil compaction and reduce
nergy consumption.

.3. Wireless Sensor Networks (WSNs)

Wireless connectivity is of paramount importance in Smart
arming since almost all connected devices need to receive or
end data wirelessly. Depending on the bandwidth required, the
ransmission distance, and the energy consumption available, we
ave to choose between different available technologies for Smart
4

Farming applications. Various wireless technologies have been
used during the last decades, like Bluetooth Low Energy (BLE),
WiFi, 3G/4G, SigFox, Narrowband IoT (NB-IoT), and LoRa [14].
More specifically, if we require high bandwidth but not very long
distance of transmission, WiFi is mandatory, whereas when we
need to transmit in long distance a small amount of data, NB-IoT
and LoRa wireless technologies are more appropriate.

In addition, most of the sensors used for measurements work
on batteries and need to transmit on long distance. The ap-
propriate networks suitable for them are those who consume
low energy. These networks are called Low Power Wide Area
Networks (LPWANs), and SigFox, NB-IoT, and LoRa, belong in this
category.

In Table 2 we present a comparison of the most frequently
used WSNs in the agriculture domain.

Bluetooth Low Energy (BLE) is an evolution of Bluetooth tech-
nology, which extends distance coverage and lowers power con-
sumption. It can operate theoretically in a distance up to 100
m with transmission speed up to 2 Mbps. Although it is not
used very often in the agriculture sector, it can be part of indoor
implementation like greenhouse monitoring.

ZigBee is also a WSN protocol for small distance achieving
lower data rates than BLE protocol. In addition, it has low power
consumption so it can be used mainly at indoor activities like
greenhouse monitoring [42], for pesticide and fertilizer control,
and at smart irrigation systems.

WiFi is a wireless local area network (WLAN) protocol com-
monly used in home and office networking, but it can also offer its
advantages in the agriculture sector. The new standard 802.11.ac
of WiFi can theoretically reach data rates up to 1.3 Gpbs to
distance up to 100 m. It is suitable for applications where high
bandwidth is required, such as implementations with UAVs and
UGVs.

The cellular networks 3G/4G and soon 5G, have been used
widely in Smart Farming for data aggregation from sensors de-
ployed in the field. The upcoming 5G will offer low latency,
reliability, and high bandwidth that are important in tasks with
machinery usage where human safety is of paramount impor-
tance. Thus, it will support Device to Device (D2D) communi-
cation in real-time and support a huge number of devices [43].
Finally, cellular networks are already offering wide coverage in
rural areas, and 5G is expected to extend it even more. The
drawbacks of their usage are the high average operating cost and
high energy consumption compared with other solutions.

Sigfox is able to transmit data at very long distance up to
40 km in rural areas, but at very low data rate up to 100 bps.
Its advantages are the low operational cost and the low energy
consumption. Although it offers bidirectional communication, the
downlink transmission occurs only after an uplink transmission.
Moreover, it has a limited duty cycle, as it is restricted to 140
uplink messages per day with 12 bytes as a maximum payload
per message.

LoRa works at an unlicensed spectrum and works at 433 MHz
and 868 MHz in Europe. It can reach a distance of 20 km and
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omparison of Wireless Sensor Networks.

BLE ZigBee WiFi 3G/4G SigFox NB-IoT LoRa

Frequency
band

2.4 GHz 868/915 MHz
2.4 GHz

2.4 GHz
5 GHz

865 MHz
2.4 GHz

433 MHz
868 MHz
915 MHz

– 433 MHz
868 MHz

Data
rate

2 Mbps 20–250 kbps 1.3 Gbps 1 Gbps 100 bps 250 kbps 50 kbps

Transmission
range

100 m 20 m 100 m Cellular
Coverage

40 km 15 km 20 km

Energy
consumption

Low Low High Medium Low Low Low

Cost Low Low High Medium Low High Low
a speed up to a few KBytes per second. In addition, it offers
low energy consumption with the theoretically expected life of
sensors on batteries up to 10 years. Since it has no license cost,
it has widely adopted within a few years.

NB-IoT is derived from Third Generation Partnership Project
3GPP) as a standard for cellular systems, aiming to service IoT
evices with low data rate and low energy consumption. It is
orking in licensed cellular spectrum limited to few licensees
hich will belong to communication companies. Comparing with
oRa, NB-IoT can operate at higher distance up to 35 km, at higher
ata rate, lower latency, and reliability.

.4. Discussion

The technologies described in this section aim to change the
pproach of how farmers and agronomists work in the field by
educing labor efforts, and by operating with accuracy on an
veryday basis. UAVs could be the eyes of the farmers and help
hem to identify precisely diseases or areas with low produc-
ion while UGVs can operate in the field in various tasks like
eeding, weeding, spraying, or harvesting. Above these, a suitable
SN is mandatory to collect data from sensors and support the
rchestration of all connected devices.
In the next decades, we will be spectators of the new era of

mart Farming, but until then, many obstacles should be over-
helmed. More specifically, although UGVs can operate continu-
usly on an everyday basis, their operational speed is still very
low compared to manual work. In addition, their accuracy in
ome tasks like harvesting and weeding is still an open issue.
UAVs also have still some disadvantages, like energy con-

umption, which restrict them to operate more time in the field.
oreover, in order to be more autonomous, more research efforts
hould be spent on their usage without human intervention, and
ew regulation rules should be adopted on this basis.
Finally, WSNs will be the backbone of the whole infrastructure,

o their characteristics will play a vital role in many factors.
or example, reducing the energy consumption of the sensor
odes is mandatory since they operate with batteries. In addition,
ow latency is essential in tasks like control of UAVs or UGVs,
specially in tasks where human protection is crucial.

. Related research areas

In this section, we are analyzing the relevant research ar-
as from ICT used in Smart Farming, namely Image Processing,
achine Learning, Big Data, and Cloud Computing. We are ana-

yzing and discussing their characteristics and provide the main
otential benefits from their usage in the agriculture section.
5

3.1. Image processing

Image Processing is one of the leading ICT technologies used in
many operations in Smart Farming. Images captured from UGVs,
UAVs, satellites, or ground sensors require image processing tech-
niques before we can derive useful information. For this purpose,
cameras in visible-spectrum, near-infrared, multispectral, hyper-
spectral, thermal, laser scanners, or synthetic aperture radar can
be used depending on the desired application.

Image processing techniques are used to create two-
dimensional maps from images taken from UAVs in various
spectrums. These maps are valuable for crop monitoring and
yield estimation, two of the most important applications in Smart
Farming. Several vegetation indices are used in literature, namely
NDVI, GNDVI, and SAVI for crop monitoring, and ARI, MARI, RGI,
ACI, MACI, CI, and GRVI for estimating the leaf pigments [44]. The
formulas of these indices are shown in Table 3.

Furthermore, three-dimensional models can be created from
images or video captured from UAVs, which can be used for
crop estimation as we can compare different 3D models taken at
distinct times within a seasonal period or compare them with a
previous seasonal period.

Similar applications for crop monitoring and yield estimation
are also useful for UGVs, but their efforts are mainly in operating
in the field. Thus, they are also equipped with more advanced Im-
age Processing techniques as Computer Vision, enabling them to
move through crops [45], detect diseases or insects [46], classify
weeds [47], and detect fruits or vegetables ready to harvest [48].
In addition, Computer Vision gives UGVs the ability to perform
operations in the field and relieve human from labor effort. Com-
puter Vision is rarely used in UAVs nowadays since their purpose
in most cases is limited in crop monitoring by capturing images
over the field.

Finally, depending on the number of captured images and the
necessity to be processed in real-time, a supporting platform is
required based on Cloud Computing. Also, techniques for Big Data
analysis should be considered in tough situations.

3.2. Machine learning

Machine Learning intends to bring significant advantages in
every domain of ICT used. Its feature to give the machines the
ability to learn without being previously programmed makes it
a promising solution for many innovative applications. A typical
Machine Learning algorithm starts with a learning process where
the system is trained with multiple sets of values. After this
procedure, classification and prediction rules are derived, which
can be used in the future with new input parameters to predict
the corresponding output, as shown in Fig. 1 [21].

The agriculture sector is one of the newest domains where Ma-
chine Learning promises a significant impact in the next decades.

Many smart farming tasks accumulate an enormous amount of
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Table 3
Vegetation indices [44].
Index name Formula

Normalized Difference Vegetation Index NDVI =
NIR−Red
NIR+Red

Anthocyanin Reflectance Index ARI = Green−1
− RedEdge−1

Modified Anthocyanin Reflectance Index MARI = (Green−1
− RedEdge−1) × NIR

Red–Green Index RGI =
Red
Green

Anthocyanin Content Index ACI =
Green
NIR

Modified Anthocyanin Content Index MACI =
NIR

Green

Chlorophyll Index Cl = NIR
RedEdge − 1

Green-Red Vegetation Index GRVI =
Green−Red
Green+Red

Soil-Adjusted Vegetation Index SAVI =
(NIR−Red)×(1+L)

NIR+Red+L

Green Normalized Difference Vegetation Index GNDVI =
NIR−Green
NIR+Green

Difference Vegetation Index DVI = NIR − Red
Fig. 1. A typical machine learning approach [21].
ata from different sources, which require processing to derive
seful information. Thus, Machine Learning based systems seems
suitable solution due to their capability of processing a large
umber of inputs and handle non-linear tasks [49]. In addition,
eep Learning was recently used in many research efforts offer-
ng modern techniques in image processing and data analysis,
ith promising results and large potential. Deep Learning is an
xtension of classical Machine Learning [22], and adds more
omplexity into the prediction models as well as transforms the
nput datasets using various functions that allow hierarchical
epresentation, through several levels. These features result in
arger learning capabilities and, thus, higher performance and
recision.
Machine Learning and Deep Learning techniques are used in

arious tasks in agriculture and are expected to bring significant
mprovements. In more detail, they are used in crop monitor-
ng [47], in water management [14], to identify diseases [50] and
o classify weeds [51].

Machine Learning and Deep Learning will also improve Knowl-
dge Managements Systems by manipulating the vast amount
f gathered data which may originate from historical data and
y combining them with recently aggregated data from ground
ensors, satellite images, images from UAVs and local weather
orecasts.

.3. Big Data

Smart Farming will be responsible for the massive deployment
f sensors in the next years, with an expected huge amount
f produced data, measuring various characteristics such as soil
6

moisture, humidity, and temperature. In addition, UAVs, UGVs,
and even satellites will generate an enormous amount of im-
ages for agriculture purposes. Moreover, additional resources are
data from weather stations, historical data gathered by govern-
mental authorities, or open source datasets available via online
repositories. All of these consist of a tremendous amount of het-
erogeneous data, which in most cases demand to be elaborated,
transferred in real-time through wireless networks, and saved.
This phenomenon is called Big Data in literature and should be
addressed regarding Smart Farming [20,52]. A proper architecture
to manipulate and store such an enormous amount of data is
Cloud Computing [53].

As described by Y. Demchenko et al. [54], Big Data can be
characterized from five dimensions, namely Volume, Velocity,
Variety, Veracity, and Valorization, known as 5Vs. The authors
A. Kalimaris et al. distinguished these dimensions in the needs
of the agriculture domain and proposed another relevant ‘‘V’’
corresponding to the Visualization of data [52].

Based on [55] the Big Data chain refers to six steps, data
capture, data storage, data transfer, data transformation, data an-
alytics, and data marketing. In [20] S. Wolfert et al. analyze these
steps regarding the agriculture domain of Smart Farming based
on the Big Data state-of-the-art applications, as shown in Fig. 2.
In more detail, the first step includes data aggregation captured
from sensors, biometric sensing, UAVs, or already available open
data. In addition, they can be genotype information or reciprocal
data. In the second step, the gathered data should be stored
probably in Cloud-based platforms. Hadoop Distributed File Sys-
tem (HDFS) is an appropriate solution while other hybrid storage
systems also exist. Data transfer is the next step, where data is
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Fig. 2. The data chain of Big Data in Smart Farming [20].
Fig. 3. Statistical analysis of research efforts in Europe for involved technologies
based on Table 4.

transferred probably throw wireless connection, and supported
from a Cloud-based platform. In the fourth step, data transforma-
tion occurs where appropriate algorithms are used for operations
such as normalization, visualization, anonymization, or machine
learning. The fifth step is where the data is analyzed in order to
define new yield models, planting instructions, or create decision
ontologies. Cognitive computing and benchmarking are also used
in this step. Finally, to exploit the results of Big Data, visualization
techniques are used for data marketing purposes.

Although Big Data in agriculture is still at an early stage, it
as the potential to arise in many applications. Weather fore-
asting [56] is an important application for Smart Farming where
ocal or global weather data should be processed to support
ecision making systems to help farmers. The produced amount
f data regarding weather forecasting is enormous and should
e analyzed and processed in real-time, which yields an extra
omplexity. Big Data is also present in crop production estima-
ion [57], where global monitoring systems can be used to provide
ata analysis tools for crop-condition monitoring and production
ssessment. Weed discrimination [58] is another domain where
large amount of data should be analyzed, processed, and used
y multiple machines in the field. In addition, newly gathered
ata should be used to evolve existing algorithms for weed con-
rol. Storage and querying this amount of data incurs significant
hallenges. Detailed knowledge of croplands based on accurate
emote sensing technologies is an important key parameter for
and management [59,60], which will result in improved produc-
ivity. All of the above applications can produce input parameters
or decision making systems to help farmers with their decisions.

.4. Cloud computing

For the elaboration and storage of the tremendous amount
f data produced from the huge amount of sensors and the
nvolved UAVs and UGVs in Smart Farming, an innovative in-
rastructure based on Cloud Computing is indispensable. As we
ad described in the previous subsection, Big Data and Cloud
omputing are interdependent, since an enormous amount of
ata should be stored, processed, and always be accessible to
nd users. Sometimes the storage and processing should occur in
eal-time, which requires extra computational resources. Cloud
7

Computing can provide on-demand computation and storage re-
sources for various agricultural applications to support the work
of farmers and agronomists [61]. In more detail, Cloud Computing
can offer a plethora of storage and computational resources, and
these resources are reliably available from any place at any time.
In addition, an elastic model of resources can lessen the overall
cost, as we can use the available resources only when we need
them.

Nevertheless, Cloud Computing is not only useful when Big
Data is present but is also suitable for many other occasions.
For example, its centralized control is proper to aggregate data
from the deployed sensors in the field and provide the derived
information in a visualized form, easy to understand from the
farmers or agronomists, on their phones or tablets from anywhere
and at any time. In essence, Cloud Computing offers an abstrac-
tion layer able to provide multiple user-friendly services to final
users. Applications like soil monitoring [62], smart irrigation [63],
disease or insect detection [46], and Farm Management Systems
(FMS) [64] are some examples of the services that can be provided
from a Cloud Infrastructure at the edge devices.

FIWARE seems a suitable Cloud architecture to support Smart
Farming applications, as it is open source with many available
enablers for agriculture. Hence, it is used in many research papers
in the literature [65,66]. Moreover, Fog Computing is a novel
promising architecture, aiming to improve the services of Cloud
Computing at the edge of the network. It promises low latency
since Fog Nodes are at the proximity of edge devices [67]. Tasks,
where UAVs and UGVs are co-operating, low latency, is essential
for the immediate response to actions. Moreover, when farm-
workers are working with heavily automated machinery, low
latency and reliability are of paramount importance for their
safety. In such scenarios, local Fog Nodes near the field can offer
their computational and storage resources with low latency and
reliability. In addition, Fog Computing can improve the reliability
of the supported system [65] and reduce the amount of data
transferred from the field to the Cloud. In particular, Fog Nodes
can participate in computational efforts and accomplish tasks on
the field while filtering the results before uploading them to the
Cloud.

3.5. Discussion

The research areas analyzed in this section are aiming to trans-
form traditional farming and to enrich it with new capabilities
to help farmers with their work and their decisions. In addition,
they constitute supporting techniques for UAVs, UGVs, and WSNs
which are deployed in the field.

More specifically, Image Processing is valuable in many tasks
in Smart Farming, as in analyzing the images taken from UAVs
and UGVs, as well as to endow them with Computer Vision
capabilities in order to operate and navigate autonomously in
cultivation. Even though Image Processing has been sufficiently
analyzed in research papers, there is still a need for research
efforts in various domains and evaluation in real environments,
in order to improve the capabilities of UAVs and UGVs, and new
services arise.
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Fig. 4. Statistical analysis of research efforts in Europe for crops used for evaluation based on Tables 5.
Although it is not mandatory in every deployment of Smart
arming, Big Data should be taken into consideration, especially
hen an enormous amount of produced data is expected from
he massive amount of connected devices. Until now, there are
ot many research efforts in the agriculture domain in Big Data,
ut in the next years, when more complex deployments will be
mplemented, we should confront the problems derived from this
henomenon.
Cloud Computing is aiming to be the central supporting sys-

em of the whole infrastructure offering its enormous amount of
torage and high processing capabilities. It may be useful in many
ases such as Knowledge Management Systems and Decision Sup-
ort Systems, and it may also be indispensable in deployments
ith Big Data requirements.

. Research efforts in Europe

In this section, we present an overview of the main research
fforts in Europe in Smart Farming. We have used Google Scholar
s a search engine with the following query :
‘‘[TECH]’’ AND ‘‘Agriculture’’ AND (‘‘experimental’’ OR ‘‘study

rea’’) AND ‘‘[COUNTRY]’’.
The keyword [COUNTRY] is one of the European countries

hile the keyword [TECH] is one of the following phrases: ‘‘UAV’’,
‘drone’’, ‘‘UGV’’, ‘‘robot’’, ‘‘WSN’’, ‘‘Big Data’’, ‘‘Cloud Computing’’,
‘Deep Learning’’, ‘‘Machine Learning’’.
8

Some criteria were used to filter the results, and we kept
only useful manuscripts from research efforts in Europe. In more
detail, we selected only conference papers or journal articles in
which the presented results evaluated in real fields or green-
houses around Europe in the Smart Farming section. To reduce
even more the results and keep the best papers, we selected
those published within the last ten years with at least fifteen
citations for those between 2010 and 2014, and at least ten
citations between 2015 and 2017. We did not set such limitations
for papers published in the last two years, but we selected them
based on the reputation of the journal and the quality of the
manuscript.

Under these criteria, we have selected 97 papers, which are
provided in Tables 4, 5, 6, and 7. More specifically, Table 4
includes the recent technologies used in Smart Farming like WSN,
UAVs, UGVs, Image Processing, Big Data, Cloud Computing, or
Machine Learning. The Table 5, provides the research efforts
categorized by cultivation crops in the experimental fields around
Europe, such as maize, olives, tomatoes, lemon trees, almond
trees, broccoli, barley, sugar beet, clover, or pomegranate. More-
over, Table 6 contains the field operations evaluated during the
experimental study in outdoor fields or greenhouses. Finally, in
Table 7, we are providing the countries from the corresponding
experimental fields.

In Figs. 3, 4, 5, 6, we are presenting a statistical analysis
depending on the research efforts in Europe from Tables 4, 5,
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Table 4
Involved technologies in European research efforts.
Involved technologies Refs

Cloud Computing [65], [63], [68], [69], [70], [71], [72], [73], [74], [75], [76]
Image Processing [77], [47], [78], [44], [79], [80], [81], [82], [83], [84], [85], [40], [86], [87], [88], [89], [50], [51], [90],

[91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [39], [102], [103], [104], [105], [106],
[107], [108], [109], [110], [111], [112], [113], [114], [115], [116], [117], [118], [119], [120], [121],
[122], [75], [123], [124], [25], [125], [126], [127], [128], [129], [130], [131], [27], [132], [133], [26],
[134], [135], [136], [137], [138], [139]

Machine Learning [47], [85], [50], [51], [91], [140], [71], [100], [102], [73], [14], [141], [114], [116], [142], [118], [143]
UAV [77], [78], [44], [79], [80], [81], [82], [83], [84], [85], [40], [86], [87], [68], [88], [144], [90], [91], [92],

[93], [94], [71], [95], [96], [98], [99], [101], [102], [103], [104], [105], [145], [106], [107], [108], [109],
[110], [111], [112], [113], [114], [115], [117], [119], [120], [121], [122], [146], [147], [123], [124],
[25], [125], [126], [127], [128], [129], [130], [131], [27], [132], [133], [26], [134], [135], [148], [76],
[137], [138], [139]

UGV [84], [40], [38], [39], [116], [122], [136]
WSN [15], [65], [63], [69], [70], [72], [73], [14], [74], [143], [76]
Table 5
Crops used in European research efforts.
Crops Refs

Almond Trees [63], [135], [148]
Apple Trees [83], [147], [136]
Apricot Trees [135]
Asparagus [97]
Barley [85], [144], [99], [103], [112], [117], [127], [128], [129], [26]
Basil [70]
Bean [74]
Cherry Trees [76]
Clementine Trees [106]
Corn [130]
Cotton [141]
Grapefruit Trees [113]
Lemon Trees [63], [135]
Maize [47], [78], [84], [144], [51], [91], [92], [101], [104], [109], [121], [27]
Mandarin Trees [111], [113]
Nectarine Trees [106]
Olive Trees [15], [84], [86], [68], [50], [89], [71], [98], [110], [25]
Opium Poppy [115]
Orange Trees [86], [106], [111], [135]
Peach Trees [69], [106], [135]
Pomegranate [81]
Potatoes [140]
Quinoa [88]
Rice [75], [137]
Soybean [122]
Strawberry [143]
Sugar beet [51], [107], [122], [146]
Sunflowers [91], [93], [95], [116], [132], [133]
Tomatoes [65], [38], [73], [14], [118], [138]
Vineyard [77], [44], [79], [82], [90], [94], [38], [72], [96], [39], [105], [145], [119], [126], [138]
Wheat [80], [84], [85], [40], [87], [144], [100], [108], [114], [142], [120], [122], [123], [124], [125], [131], [134], [139]
Table 6
Field operations in European research efforts.
Field Operations Refs

Crop Monitoring [65], [63], [77], [47], [79], [80], [82], [83], [84], [85], [40], [87], [88], [144], [92], [71], [72], [95], [96], [98],
[99], [102], [103], [73], [105], [145], [106], [107], [108], [109], [110], [111], [112], [113], [74], [114], [142],
[117], [119], [120], [121], [122], [146], [75], [147], [123], [124], [25], [125], [127], [128], [129], [130], [131],
[26], [134], [148], [76], [137], [138], [139]

Disease Detection [44], [68], [89], [50], [97], [115], [118]
Harvesting [136]
Pruning [39]
Spraying [79], [84], [86], [68], [38]
Water Management [15], [65], [63], [81], [69], [90], [70], [107], [14], [112], [74], [143], [126], [135], [76]
Weed Management [78], [84], [51], [91], [93], [104], [116], [124], [27], [132], [133], [134]
Yield Prediction [140], [100], [101], [141], [121]
6, 7. More specifically, Fig. 3 provides the statistical analysis of
participating ICT types, Fig. 4 applies to the kind of crops used for
evaluation, Fig. 5 refers on operations used in the field, and Fig. 6
presents the countries where evaluation process took place.
9

5. Research projects in Europe

During the last decades, Europe tries to adopt various techno-
logical innovations in the field of agriculture, aiming to increase
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Table 7
European countries involved in research efforts.
Country Refs

Belgium [109], [136]
Denmark [99], [112], [139]
Finland [85], [123]
France [44], [80], [83], [51]
Germany [87], [92], [101], [103], [142], [127], [128], [129], [130], [131], [26]
Greece [81], [68], [97], [14], [141], [120], [75]
Ireland [143]
Italy [77], [78], [82], [89], [50], [70], [94], [38], [105], [145], [114], [115], [116], [75], [137], [138]
Lithuania [108]
Netherlands [88], [147]
Norway [40]
Poland [144]
Portugal [69], [96], [39]
Russia [73]
Spain [15], [65], [63], [79], [84], [86], [90], [91], [93], [140], [71], [72], [95], [98], [102], [104], [106], [107], [110],

[111], [113], [74], [117], [118], [119], [121], [146], [75], [124], [25], [125], [126], [27], [132], [133], [134],
[135], [148], [76]

Switzerland [122]
Turkey [47]
United Kingdom [100]
Fig. 5. Statistical analysis of research efforts in Europe for operations in the fields based on Tables 6.
roduction while reducing cost and improving the quality of
roducts with minimal use of fertilizer or pesticides. In this vein,
he European Union funds many research projects to support
he evolution of the agriculture domain. As mentioned in the
revious Sections 2 and 3, such technological innovations are
nmanned Aerial Vehicles, Unmanned Ground Vehicles, Wireless
ensor Networks, Image Processing, Machine Learning, Big Data,
nd Cloud Computing.
In this section, we are discussing the best European Union

rojects of the above technological fields in the agriculture sector.
e are presenting them in classification in Table 8, and then
e analyze each of them briefly. In more detail, in the column

‘Involved Technologies’’ of Table 8, we classify each project based
n the technologies used in the field, namely Unmanned Aerial
ehicles, Unmanned Ground Vehicles, Wireless Sensor Networks,
mage Processing, Machine Learning, Big Data, and Cloud Comput-
ng. In the next column, we are presenting the crop types used
or testing and evaluation. Finally, we are providing the opera-
ions performed in the field for each project, namely harvesting,
eeding, crop monitoring, water management, and weeding.
In the next subsections, we briefly describe each project of
able 8, and provide all the available information found.

10
5.1. ECHORD Plus Plus

ECHORD Plus Plus [149] was an EU project that tried to pro-
mote interaction between robot manufacturers, researchers, and
users by facilitating the cooperation between academia and in-
dustry. A number of application-oriented research subprojects
funded under ECHORD Plus Plus, of which seven focused in the
area of Smart Farming, namely, GARotics, MARS, SAGA, GRAPE,
CATCH, INJEROBOTS, and 3DSSC.

GARotics (Green Asparagus Harvesting Robotic System) sub-
project was aiming to develop a robotic system for green aspara-
gus, with an improved automatic harvesting mechanism com-
pared with existing solutions. The robot was able to detect and
harvest with accuracy the final product in the field, thus relieving
the need for seasonal workers.

MARS (Mobile Agricultural Robot Swarms) subproject was
aiming to develop a mobile agricultural robot (Fig. 7), which had
the ability to cooperate and work in swarms. The subproject
MARS had focused on the seeding process for corn and had three
main aspects. Firstly, it was aiming to reduce the need of seeds
during the seeding process as well as reducing the need for
fertilizer and pesticides. Secondly, since the developed UGV was
small enough, it avoids the soil compaction as well as the major

energy consumption from the existing heavy machinery. Finally,
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Fig. 7. UGV from project MARS is able to work in swarms.

the provided solution was flexible, highly automated, and simple
to operate, parameters which are essential in the Smart Farming
era.

SAGA (Swarm Robotics for Agricultural Applications) subpro-
ect was intended to demonstrate technologies like cooperation
nd parallel operation of multiple robots. In this vein, a small
umber of UAVs have been exploited to monitor and map a large
ugar beet field, to detect the presence of weeds and determine
hen a weeding procedure is necessary.
GRAPE (Ground Robot for vineyArd monitoring and ProtEc-

ion) subproject was aiming to develop a UGV (Fig. 8) able to ex-
cute semi-autonomous vineyard monitoring and farming tasks.
or example, the UGV was able to use biological techniques in
vineyard like green pruning, bunch-tip thinning, and precise

praying with respect to traditional practices. Such innovative
oncepts in a vineyard can reduce chemical usage and improve

he cost-effectiveness of products.

11
Fig. 8. UGV from subproject GRAPE suitable to operate in vineyards.

CATCH (Cucumber Gathering — Green Field Experiments) sub-
project was targeting to develop a flexible, reconfigurable and
cost-effective UGV which can help in harvesting in outdoor fields.
In particular, the developed UGV has been tested on harvesting
cucumbers.

INJERROBOTS (Universal Robotic System for Grafting of
Seedling) subproject has proposed to develop two flexible, co-
operative robotic arms that can perform grafting for horticultural
plants like tomatoes, peppers, eggplants, cucumbers, melons, and
watermelons.

5.2. WaterBee

WaterBee [150] (Low cost, easy to use Intelligent Irrigation
Scheduling System) was an EU project aiming to reduce wa-
ter wastage by wisely manage it in the agriculture sector. To
achieve that, an intelligent irrigation system was designed using
soil moisture sensors, integrated into low-cost sensors networks,
and managed with intelligent software. In more detail, a Zig-
Bee wireless sensors network was deployed into the growing
area, providing continuous measurements for the actual real-time
soil-moisture conditions, that was more accurate and in higher
density than any other known method before. Combined with
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able 8
esearch projects in Europe.
Ref Acronym

(Start Date)
(End Date)

Involved
Technologies

Crop Field Operations

[149] ECHORD Plus Plus
(01-10-2013)
(30-09-2018)

Cloud Computing
Image Processing
Machine Learning
UAV
UGV

Asparagus
Corn
Cucumber
Eggplant
Melons
Peppers
Sugar Beet
Tomatoes
Vineyard
Watermelons

Crop Monitoring
Grafting
Harvesting
Pruning
Seeding
Spraying
Weed Management

[150] Water-Bee
(01-10-2008)
(30-09-2010)

WSN – Water Management

[151] SMART-AKIS
(01-03-2016)
(31-08-2018)

– – KMS

[152] SWEEPER
(01-02-2015)
(31-10-2018)

Image Processing
UGV

Peppers Harvesting

[153] VINEROBOT
(01-12-2013)
(31-05-2017)

Image Processing
Machine Learning
UGV

Vineyard Crop Monitoring
Disease Detection
Water Management

[154] VINBOT
(01-02-2014)
(31-01-2017)

Cloud Computing
Image Processing
UGV

Vineyard Crop Monitoring
Yield Prediction

[155] FIGARO
(01-10-2012)
(30-09-2016)

WSN – Water Management

[156] Flourish
(01-03-2015)
(31-08-2018)

Image Processing
UAV
UGV

Sugar Beet
Sunflower

Crop Monitoring
Spraying

[157] PANtHEOn
(01-11-2017)
(31-10-2021)

Big Data
UAV
UGV
WSN

Hazelnuts Crop Monitoring
Water Management

[158] FOODIE
(01-03-2014)
(28-02-2017)

Cloud Computing – KMS

[159] ERMES
(05-09-2013)
(01-03-2017)

Big Data
Cloud Computing
UAV
WSN

Rice Crop Monitoring

[160] ENORASIS
(01-01-2012)
(31-12-2014)

WSN Apple Trees
Cherry Trees
Corn
Cotton
Grapefruit
Maize
Potatoes
Raspberry

Water Management

[161] FRACTALS
(01-09-2014)
(31-08-2016)

Cloud Computing
WSN

Olive Trees Crop Monitoring
Disease Detection
Fertilization

[162] MISTRALE
(01-01-2015)
(31-12-2017)

Image Processing
UAV

Potatoes
Vineyard

Crop Monitoring
Water Management

[163] GATES
(01-01-2017)
(30-06-2019)

– – Educational

[164] ROMI
(01-11-2017)
(31-10-2021)

UAV
UGV

– Crop Monitoring
Weed Management

[165] WEAM4i
(01-11-2013)
(30-04-2017)

Cloud Computing
WSN

– Water Management

[166] CHAMPI-ON
(01-02-2011)

Image Processing
Machine Learning

Mushrooms Harvesting
(31-08-2013)
12
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istorical and forecast meteorological data, intelligent software
ecides more precisely about the water needs of the crop.
WaterBee DA (WaterBee Demonstration Action) was the next

hase of the successful project WaterBee. The developed proto-
ype has been tested and evaluated for 15 months across Europe,
n real agricultural fields with various crops. The aforementioned
emonstration action has taken place in 12 fields in Estonia, Italy,
alta, Sweden, Spain, and the United Kingdom.
During the evaluation at those trials with various crops and

n different growing conditions, the following benefits for the
armers involved: (a) achieved 21% on average, with a maximum
f up to 44% on irrigation water savings, (b) reduction up to 23%
n irrigation events, (c) excellent return of investment (ROI), as
epaid period for a WaterBee system is expected to be 5 years for
mall farms as 1.5 ha.

.3. Smart-AKIS

The EU project Smart-AKIS [151] (European Agricultural
nowledge and Innovation Systems (AKIS) towards innovation-
riven research in Smart Farming Technology) was aiming to
ollect and disseminate the best practices around Europe in the
rea of Smart Farming. In more detail, its main concept was
o implement a self-sustainable Thematic Network containing
xisting scientific knowledge as well as best practices and provide
hem in an understandable and easy to use format for agricultural
ractitioners. In this vein, SMART-AKIS was trying to bridge
he gap between research and the final users in agriculture.
he project was based on results from five EU projects, namely
ALERIE, SOLINSA, PRO-AKIS, FRACTALS, and AGRISPIN.
After almost three years, SMART-AKIS Thematic Network over

00 Smart Farming solutions showcased and assessed in the
nline platform, and over 50 solutions were adopted by farmers
nd agronomists.

.4. SWEEPER

The EU project SWEEPER [152] (Sweet Pepper Harvesting
obot) was targeting on developing a UGV able to harvest peppers
n greenhouses, relieving thus farmworkers from an uncomfort-
ble and repetitive task. In particular, the developed robotic
ystem tried to overcome obstacles of the previous implementa-
ions in the domain, such as the slow speed and the low success
ate of around 33% on picking the right fruit.

The implemented UGV (Fig. 9) has been designed and tested
n pepper harvesting; however, it can be easily modified to suit
ther crops and tasks, such as harvesting apples and grapes or
praying. The SWEEPER project was based on a previous EU-
unded project, named CROPS, on which harvester technology
as implemented for peppers, such as localization and fruit ma-
urity detection.

.5. VINEROBOT

VINEROBOT [153] (VINEyardROBOT) was an EU project aiming
o develop a novel UGV capable of monitoring grape growth.
ore specifically, the UGV would have the obligation of vineyard
anagement such as grape yield, vegetative growth, water stress,
nd grape composition in order to achieve better grape synthesis
nd wine quality. Such an automation approach is able to deliver
etter results than the existing traditional methods with hand-
eld equipment. In addition, comparing to aerial monitoring from
lanes or UAVs, it provides better results with better image
uality.
The developed VINEROBOT (Fig. 10) was supplied with arti-

icial intelligence and machine learning techniques in order to
ontinuously improve its abilities in vineyard management.
 a

13
Fig. 9. The SWEEPER is designed to harvest peppers in a greenhouse.

Fig. 10. The VINEROBOT is capable of monitoring grape growth.

.6. VINBOT

The EU project VINBOT [154] (Autonomous Cloud-Computing
ineyard Robot to Optimize Yield Management andWine Quality)
as developed a UGV which is responsible for vineyard monitor-
ng and management. It was charged with tasks such as decision
aking in grape yield estimation and relevant canopy features,
enerating maps of the crop, and record the state and location
f the assets. In addition, it is equipped with sensors allowing
t to roam autonomously in the vineyard and monitor grapes
nd bunches to predict future yields with no human interven-
ion. All the generated information is uploaded in the cloud, and
he derived results are provided with an easy to use way to
inegrowers, giving them the opportunity for accurate decision
aking.
VINBOT (Fig. 11) is not intended for individual winegrowers

ince it is still expensive, whereas it may be suitable for service
roviders and wine producers.

.7. FIGARO

FIGARO [155] (Flexible and PrecIse IrriGation PlAtform to Im-
rove FaRm Scale Water PrOductivity) was an EU-funded project
ocused on water management in order to reduce fresh water
sage. The proposed implementation consisted of a cost-effective
recision irrigation management system based on newly preci-
ion technologies and tested simultaneously in many countries
round Europe. In more detail, soil, water, and plant sensors
ositioned around the field, and their measurements combined
ith information from local meteorological stations uploaded to
IGARO irrigation management platform. Based on the analysis of
his information, the developed decision support system provides
pecific and accurate recommendations for farmers, on howmuch

nd when to irrigate their crops.
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Fig. 11. The VINEBOT is responsible for vineyard monitoring and management.

.8. Flourish

The EU funded project Flourish [156] (Aerial Data Collection
nd Analysis, and Automated Ground Intervention for Precision
arming) aimed to bridge the gap between the existing and the
esired capabilities of autonomous robotics solutions. In this vein,
lourish proposed and developed a combined robotic solution
ith an autonomous small multi-copter UAV and a multi-propose
GV (Fig. 12). The developed UAV can provide the appropriate in-
ormation from aerial views while the UGV can perform targeted
asks. For example, the UAV can survey the field and identifies
egions where a weeding process is necessary. This information
s used from the UGV for navigation to the area of interest in
he field, and after a precise scanning of the crops, it classifies
very plant and spraying only on detected weeds. The Flourish
roject has been tested and evaluated in fields with sugar beet
nd sunflowers.

.9. PANtHEOn

PANtHEOn [157] (Precision Farming of Hazelnut Orchards) is
n ongoing EU-funded project which is aiming to develop an
gricultural equivalent of an industrial Supervisory Control And
ata Acquisition (SCADA) system suitable for use in precision
arming agriculture. The consortium will use a limited number
f UGVs and UAVs (Fig. 13) properly to collect information at the
esolution of a single plant and perform typical farming opera-
ions. All the acquired data will be collected in a central operative
nit where it will be analyzed, and automatic operations will
e performed in the field, such as regulation of the irrigation
ystem. Moreover, the system can be used from agronomists as
upport to their decisions. The proposed SCADA infrastructure
14
Fig. 12. The developed UAV and UGV from Flourish project are able to cooperate
in order to accomplish various tasks in the field.

will be tested and evaluated in large orchards hazelnuts, and
the expected results are, (a) increase in hazelnut productions, (b)
decrease in pesticides usage, (c) environmentally-friendly water
usage, and (d) simplified management of large orchards.

5.10. FOODIE

The EU-funded project FOODIE [158] (Farm-Oriented Open
Data in Europe) was aiming to develop an open platform hub
based on Cloud Computing in order to provide computing and
storage resources for data management related to the agricultural
section. Existing open datasets, data publications, and data linking
from heterogeneous data sources are used to provide services to
any interested stakeholder. More specifically, FOODIE platform
contains farming data such as maps, sampling data, yield, and
fertilization. Moreover, public open data like land satellite images,
agro-food statistical indicators, nature data, soil data, hydrome-
teorological data, as well as commercial data, like VHR satellite
images and orthophotos, will also be available. Finally, the plat-
form contains voluntarily collected data e.g. from agriculture
production and OpenStreetMap.

FOODIE is targeting four primary groups of users, namely
stakeholders from the agriculture sectors, the public sector, re-
searchers interesting in large-scale experimentation on real data,
and ICT companies.

5.11. ERMES

ERMES [159] (An Earth obseRvation Model based RicE infor-
mation Service) was an EU-funded project which was aiming
to provide services dedicated to the rice sector at the regional
and local scale. Firstly, the Regional Rice Service (RRS) has been
developed as a service to public authorities for regional planning.
More specifically, a customized agro-monitoring system was used
to contribute to monitoring crop status and regional estimation
of yield as well as for alerting potential biotic and abiotic risks.
Secondly, to support the private sector, the Local Rice Service
(LRS) is providing information such as yield variability pattern,
crop damage, and potential biotic and abiotic risks. The data
used as input from ERMES project was coming from satellite
images, from aerial views from UAVs as well as from in-situ
measurements.
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Fig. 13. The developed UAV and UGV from PANtHEOn project are able to collect information at the resolution of a single plant.
.12. ENORASIS

The EU-funded project ENORASIS [160] (ENvironmental Op-
imization of IRrigAtion Management with the Combined uSe
nd Integration of High PrecisIon Satellite Data) was targeting on
ptimization of water usage from farmers by providing intelligent
anagement tools and services. In particular, the benefits from

he project concerning farmers, were the reduction of operational
ost, improvement of property value, and the elimination of water
unoff pollution. Moreover, the impact of ENORASIS for water
ompanies were the increment of operational planning capacity,
mart water pricing models, and long-term decisions in invest-
ent planning. To achieve that, the consortium of the project
as developed and tested a number of innovative technologies,
ethodologies, and models, such as weather prediction systems
ased on satellite observations, smart irrigation systems with
ptimization techniques, and wireless sensors networks for field
easurement and monitoring.

.13. FRACTALS

The EU-funded project FRACTALS [161] (Future Internet En-
bled Agricultural Applications) was intending to support ICT
MEs to take advantage of FIWARE platform and implement
nnovative applications suitable for the market in the agriculture
ector. After an Open Call for proposals from European compa-
ies, 46 of them were awarded for receiving funding and creating
heir market-ready applications. Between them, three were in
he area of Smart Farming, namely N-eXpert, Smart-Plant, and
LIWES. In particular, they intended to implement Farm Manage-
ent Information Systems to support farmers in their decision
aking.
In particular, N-eXpert was aiming to reduce resource inputs

nd consequently cut down production costs. Based on the spatial
attern of the differences in nutrient status and demands of the
ield, a Farm Management Information System was implemented
o help farmers in planning their fertilization strategy based on
ecent fertilization regulations. Thus, using the specified amount
f nutritious when and where needed, they produced optimal
ield formation and minimize losses of nutrients.
Smart-Plant subproject was aiming to help farmers to op-

imize their production by using the implemented ICT online
olution. This solution was able to provide in real-time, possible
isks of the appearance of pests and diseases based on data
athered from the field.
OLIWES subproject has developed a Farm Management In-

ormation System to support farmers to prevent diseases, re-
uce damages, and decrease the usage of pesticides on olive
arms. The system uses historical and geo-located data, bulletins,
nd algorithms to create a complete scenario for any individual
ituation.
15
5.14. MISTRALE

The EU-funded project MISTRALE [162] (Monitoring of SoIl
moiSture and wateR-flooded Areas for agricuLture and Environ-
ment) was aiming to provide relevant information to farmers for
soil moisture of their fields. For this purpose, it has been devel-
oped a GNSS Reflectometry sensor integrated into a dedicated
Remotely Piloted Air System (RPAS). Collected images are used
to create soil moisture maps, and flooded areas monitoring. The
developed system was tested and evaluated in vineyard and pota-
toes fields. In vineyard fields, the results were not satisfactorily,
since the depth of the roots of wines is beyond the penetration
depth of GNSS-R.

5.15. GATES

The GATES [163] (Applying GAming TEchnologies for training
professionals in Smart Farming) was an EU-funded project aim-
ing to develop a game-based training platform, and to educate
agronomists and agriculturist on the applicability of Smart Farm-
ing in agriculture. In particular, they are being taught on available
equipment and the economic benefits as well as the environmen-
tal impact of Smart Farming. The developed game has an easy to
use interface with playable and enjoyable gaming experience, and
it is available on various platforms, like Android, iOS, Windows,
and Web. It has three different game modes, ‘‘Main Story’’, ‘‘Be-
come an Expert’’, and ‘‘Simulation’’ game mode. More specifically,
the first game mode focuses on increasing player’s awareness
of existing Smart Farming technologies and the benefits derived
from their application. The second game mode concentrates on
more complex scenarios to deepening players in various aspects
such as sensors, machinery, software, and services. Finally, in the
third game mode, real data such as weather data, yield data, and
soil data from previous years from different climate zones around
Europe are used. Thus, users are trained in simulation mode with
real data in the crop of their choice in a specific area. At the end
of the season, they are able to compare their performance with
other players. The game is targeting to various user groups like
agronomy students, agricultural advisors, sales-force agents, and
farmers.

5.16. ROMI

The EU-funded project ROMI [164] (RObotics for MIcrofarms)
is an ongoing project targeting in microfarms. The consortium
is aiming to develop a UGV capable of performing tasks such as
weeding, crop monitoring, and gathering detailed information on
any individual plant. The UGV will also be supported by a UAV
responsible for acquiring global information from the whole crop.
An advanced 3D plant analysis from in-field data acquisition will
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rovide useful information that will help the farmers on their
ecisions. ROMI will utilize novel adaptive learning techniques
o deal with unpredicted situations. The expected benefits for the
armers are the reduction of manual labor by 25%, as well as the
ncrease of productivity.

.17. WEAM4i

The EU-funded project WEAM4i [165] (Water and Energy Ad-
anced Management for Irrigation) was targeting on developing a
mart grid system to reduce the water and energy consumption
n smart irrigation systems. Moreover, one additional objective
f the project was the implementation of an ICT cloud platform
o provide Decision Support System (DSS) applications for the
xisting irrigation systems in the local fields. Demonstrations of
he proposed techniques were performed and evaluated in three
U countries, and the results were satisfying in water usage and
nergy consumption.

.18. CHAMPI-ON

The CHAMPI-ON [166] (Fully Automatic System for Picking and
andling Mushrooms for the Fresh Market) was an EU-funded
roject which has developed an automated robotic mechanism
or picking and handling ‘‘agaricus - bisporus’’ mushrooms. In
articular, the robotic system equipped with a camera capable
f identifying the next mushroom with the appropriate level of
rowth. Then a robotic arm takes over to harvest it and place it
o a tray. In order to accomplish this task, image processing algo-
ithms have been used to identify mushrooms of size 38–60 mm
nd not to blemish the selected mushroom or the neighboring
nes. Benefits from the developed system are the reduction of
abor efforts by 80% as well as the prevention in damage or
lemish of the white skin of the mushrooms compared with other
utomated mechanisms.
In Figs. 14, 15, 16, 17, we are presenting a statistical analysis

epending on the European Projects from Table 8. More specif-
cally, Fig. 14 provides the statistical analysis of participating
CT types, Fig. 15 applies to the kind of crops used for test and
valuation, Fig. 16 refers to operations used in the field, and
ig. 17 presents the participating countries of the project.

. Trends and challenges

Traditional farming will evolve in a new era with less labor
fforts and, hopefully, with products produced with less pes-
icides and fertilizers. The recent evolution in ICT promises to
ring Smart Farming in its climax in the next decades. UAVs and
GVs seem to be in the first line of this evolution, promising
any innovative solutions in fields. WSNs will support the whole

nfrastructure by connecting all devices together while Cloud
omputing can be at the central role for their orchestration. In
ddition, Image Processing, Machine Learning, and Big Data are
esearch fields with significant involvement in Smart Farming.
owadays, numerous research efforts can be found in every re-
earch domain of Smart Farming, trying to set the basis of this
volution.
In the near future, UAVs will have a significant impact on how

e will collect information about the status of cultivation in order
o translate it into risk and knowledge management for the farm-
rs. For that reason, UAVs on their own is a research challenge
ith high importance among researchers. For example, potential
hallenges in this area include disease recognition for various
ultivations, developing of fully autonomous UAVs, develop and
rchestrate of a swarm of UAVs, as well as privacy and security
oncerns for people and property around the flight area.
16
In addition, another part of mechanical innovation is UGVs
which may replace heavy machinery in the field, or at least
supplement it in some tasks. Researchers are trying to make them
useful in numerous tasks like seeding, spraying, weeding, and
harvesting. Thus, they might face various challenges, such as im-
proving accuracy and speed in harvesting, improving navigation
in the field, and protecting people from accidents while operating.
Finally, another challenge is setting up UGVs in swarms in order
to complete complex tasks through cooperation.

Moreover, wireless connectivity among involved devices will
be required on an everyday basis. Thus, WSN will also have
a significant impact on the whole system. Recent technologies
in communications were developed, taking into consideration
various requirements which are suitable in Smart Farming or
other applications of the Internet of Things. For example, some
applications require low latency and high bandwidth, while oth-
ers require low energy consumption. Furthermore, since most
devices on the field operate on batteries, the reduction of energy
consumption at minimum levels is still a research challenge, on
which many researchers work.

Recent research trends required UAVs and UGVs to become
smarter during their operation, such as detecting diseases in the
cultivation or deciding whether there is a need for watering. Thus,
image processing techniques are widely used in such tasks. More-
over, Computer Vision, a specific branch of Image Processing, will
make even clever UAVs and UGV, being able to recognize specific
objects and navigate them securely in the cultivation or detect
whether a fruit is ready for harvesting.

Machine Learning can also leverage intelligence in complex
tasks of Smart Farming. For example, novel algorithms can im-
prove disease detection accuracy, which is of paramount im-
portance, as early detection of diseases can help the prevention
with the appropriate treatment and reduce the overall amount of
pesticides. In addition, weed detection can be benefited from ma-
chine learning algorithms, as images captured from UAVs or UGVs
can be used as input, and the results can supply the appropriate
information the automated mechanisms of UGVs in weeding.
Finally, another machine learning application is yield prediction
to help farmers estimate the production of their cultivation in the
upcoming season.

The numerous involved devices are expected to produce an
extreme amount of data that should be processed and stored.
Researches are being concerned more and more about this phe-
nomenon called Big Data. Manipulation of such amount of data,
especially when real-time processing is needed, is a big chal-
lenge. Big Data is mainly present in applications that cover ex-
tensive cultivation areas. Thus, it is often present in governmental
projects which cover the cultivations of a specific region of their
territory. Moreover, large agricultural associations may face with
Big Data when they want to supply their supported farmers with
innovative technologies in ICT.

Cloud Computing can support the whole infrastructure of a
Smart Farming solution with its enormous amount of storage
and processing capabilities. One of its primary roles is having
the central control of all devices and offering multiple services
to support and extend their capabilities. Especially when we are
dealing with Big Data, Cloud Computing seems the ideal platform.
Researchers should face challenges in these scientific areas and
implement new solutions for Smart Farming purposes.

The biggest challenge for researchers will be to combine all the
involved technologies and implement a complex infrastructure
to support every task of modern cultivation. Although such an
approach is optimistic for now, there are already few research
works that are trying to promote it. For example, the projects
PANtHEOn [157] suggests co-operation between UAVs and UGVs
in order to perform complex tasks in the field, while Cloud
Computing supports them.
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Fig. 14. Statistical analysis of European Projects for involved technologies used based on Table 8.
Fig. 15. Statistical analysis of European Projects for crops used for evaluation based on Table 8.
In the near future, an expected optimistic scenario would be
the co-operation of a swarm of UAVs with a swarm of UGVs, while
deployed sensors in the field are collecting various information
like temperature and soil humidity and this information is aggre-
gated through a WSN to a Cloud Computing infrastructure. The
collected data from sensors, UAVs, and UGVs, should be processed
based on Big Data techniques. Especially for image data acquired
from UAVs and UGVs, real-time Image Processing, and Machine
Learning techniques running in Cloud Computing are required,
as the results and decisions should be returned with low latency
back to the field.

7. Conclusion

Smart Farming is aiming to be the new revolution in the
agriculture domain and bring significant changes in how agricul-
turists and agronomists work on the field. The use of innovative
methods and the involvement of ICT technologies like Unmanned
Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs), Im-
age Processing, Machine Learning, Big Data, Cloud Computing,
17
and Wireless Sensor Networks (WSNs) will impact positively in
the sustainability and efficiency of the agriculture by increasing
the productivity and reducing the need of inputs in the field,
like nutritious and pesticides. In addition, the intensive use of
automated mechanisms will lessen the labor effort needed and
relieve farmers from many ordinary tasks.

Europe is aiming to become a leader in this upcoming era in
the agriculture domain, spending a lot of effort and investments
in this direction. Many research projects have been funded un-
der the European Union in the agriculture domain, and many
researchers from Europe have a significant contribution in this
sector. Such evolution is substantial for the sustainability of the
agriculture domain in European countries to protect them against
the globalization of trade and economy.

Due to the multiple technologies involved in Smart Farming,
scientists from different scientific areas should cooperate to boost
the progression of innovative methods in the agriculture domain.
To support their work, we presented the state-of-the-art research
efforts in Smart Farming tested and evaluated in fields around the



V. Moysiadis, P. Sarigiannidis, V. Vitsas et al. Computer Science Review 39 (2021) 100345
Fig. 16. Statistical analysis of European Projects for operations in the field based on Table 8.
Fig. 17. Statistical analysis of European Projects for countries where evaluation process took place based on Table 8.
European region. We have discussed them and give information
on the involved ICT technologies and their impact on the field.
In addition, we tried to summarize the most significant projects
18
funded in Europe and give information about the involved ICT
technologies, the kind of crop they tested in and evaluated, and
the operations advancing on the field.



V. Moysiadis, P. Sarigiannidis, V. Vitsas et al. Computer Science Review 39 (2021) 100345

t
f
a
a
o
i
m
C
c
s

t
a
a
b
p
a

D

c
t

A

n
E

R

It is apparent that with the advent of Smart Farming, a lot of
hings will be changed in the agriculture section, such as how
armers are working on the field, as well as the expected quality
nd quantity of production. Smart Farming will retain the sustain-
bility of agriculture and will continue to support the livelihood
f human species. It is expected that UAVs and UGVs will become
ntegral equipment in the field along with the traditional heavy
achinery. In addition, services from ICT like Big Data, Cloud
omputing, Image Processing, Machine Learning, and wireless
ommunication will be integrated into the whole infrastructure,
upporting the decision making of agronomists and agriculturists.
Complex solutions combining two or more of the above ICT

echnologies, such as the cooperation between UAVs and UGVs
re also a common issue and will boost the sustainability of
griculture even more. In addition, integrated solutions that com-
ine crops, livestock farming, and forestry, along with weather
redictions, are promising to reduce the overall cost production
nd reduce Greenhouse Gas (GHG) emission.
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